Self Studies

Differentiation Test 19

Result Self Studies

Differentiation Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Differentiate $$\displaystyle x^{\sin^{-1}x}$$ w.r.t. $$\displaystyle \sin ^{-1}x.$$
    Solution
    Let  $$\displaystyle y = x^{\sin^{-1}x}$$ and  $$z = \displaystyle \sin ^{-1}x\Rightarrow \sin z = x$$
    we have to find $$\cfrac{dy}{dz}$$
    $$\Rightarrow y = (\sin z)^z$$ taking $$\log$$ both side $$\log y = z\log \sin z$$
    Differentiating w.r.t $$z$$
    $$\displaystyle \frac{1}{y}\frac{dy}{dz}=\log\sin z+z\frac{\cos z}{\sin z}$$
    $$\therefore \displaystyle \frac{dy}{dz}=y\left(\log\sin z+z\frac{\cos z}{\sin z}\right)=\displaystyle x^{\sin ^{-1}x}\left [ \log x+\sin ^{-1}x.\frac{\sqrt{\left ( 1-x^{2} \right )}}{x} \right ]$$
  • Question 2
    1 / -0
    If $$y = \displaystyle (\tan x)^{\log x}$$, then $$\cfrac{dy}{dx} = $$
    Solution
    Let  $$y = \displaystyle (\tan x)^{\log x}$$
    $$\log y = \log x .\log \tan x$$
    Differentiating both side w.r.t $$x$$
    $$\cfrac{1}{y}.\cfrac{dy}{dx} = \cfrac{\log \tan x}{x}+\cfrac{\log x}{\tan x}(\sec^2x)$$
    $$\Rightarrow \cfrac{dy}{dx} =  (\tan x)^{\log x} \left[\cfrac{\log \tan x}{x}+\cfrac{\log x}{\tan x}(\sec^2x) \right]$$
  • Question 3
    1 / -0
    If $$2f\left( \sin { x }  \right) +f\left( \cos { x }  \right) =x$$, then $$\displaystyle \frac { d }{ dx } f\left( x \right)$$ is
    Solution
    $$\displaystyle 2f\left( \sin { x }  \right) +f\left( \cos { x }  \right) =x$$     ...(1)
    Replace $$x$$ by $$\displaystyle \frac { \pi  }{ 2 } -x$$
    $$\displaystyle 2f\left( \cos { x }  \right) +f\left( \sin { x }  \right) =\frac { \pi  }{ 2 } -x$$     ...(2)
    Solving we get , $$\displaystyle 3f\left( \sin { x }  \right) =\frac { \pi  }{ 2 } +3x$$
    $$\displaystyle \therefore f\left( x \right) =\frac { \pi  }{ 6 } +\sin ^{ -1 }{ x } \quad \\\displaystyle\therefore \frac { d }{ dx } f\left( x \right) =\frac { 1 }{ \sqrt { 1-{ x }^{ 2 } }  } $$
  • Question 4
    1 / -0
    Differentiate $$\displaystyle \tan x^{n}+\tan ^{n}x-\tan ^{-1}\frac{a+x^{n}}{1-ax^{n}}.$$
    Solution
    Let  $$y = \displaystyle \tan x^{n}+\tan ^{n}x-\tan ^{-1}\frac{a+x^{n}}{1-ax^{n}}.$$

    $$\Rightarrow \displaystyle y= \tan x^{n}+\tan^{n}x-\left ( \tan^{-1}a+\tan^{-1}x^{n} \right )$$

    $$\displaystyle\therefore \frac{dy}{dx}= \left ( \sec^{2}x^{n} \right ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-0-\left [\dfrac{ 1}{\left ( 1+x^{2n} \right ) }
    \right ]nx^{n-1}$$

    $$= \left ( \sec^{2}x^{n} \right

    ).nx^{n-1}+n\tan^{n-1}x.\sec^{2}x-\left [\dfrac{ 1}{\left ( 1+x^{2n} \right ) }

    \right ]nx^{n-1}$$
  • Question 5
    1 / -0
    A curve passing through the point $$(1,1)$$ is such that the intercept made by a tangent to it on x-axis is three times the x co-ordinate of the point of tangency, then the equation of the curve is:
    Solution
    Equation of tangent on any point on the curve is,
    $$\displaystyle Y-y=\frac{dy}{dx}\left ( X-x \right )$$
    Thus intercept on the x-axis is,$$\displaystyle

    I_{x}=x-\frac{y}{dy/dx}$$
    Now using given condition,
    $$\displaystyle

    I_{x}=x-\frac{y}{dy/dx}=3x$$
     $$\displaystyle \therefore

    y\frac{dx}{dy}+2x=0$$ 
    or $$\displaystyle

    \frac{dx}{2x}+\frac{dy}{y}=0$$ or $$\displaystyle \frac{1}{2}\log x+\log

    y=k$$ or $$\displaystyle \log y\sqrt{x}=e^{k}=constant$$
    Now given this curve passing through (1,1) $$\Rightarrow k=0$$
    $$\therefore $$ Hence required curve is, $$y=\cfrac{1}{\sqrt{x}}$$
  • Question 6
    1 / -0
    Differentiate the following: $$\displaystyle \cot ^{-1}\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{\left ( 1+\sin x \right )}-\sqrt{\left ( 1-\sin x \right )}}$$
    Solution
    Let  $$y = \displaystyle \cot ^{-1}\frac{\sqrt{1+\sin x}+\sqrt{1-\sin

    x}}{\sqrt{\left ( 1+\sin x \right )}-\sqrt{\left ( 1-\sin x \right )}}$$

    $$\displaystyle y= \cot^{-1}\frac{\left (

    \cos\frac{x}{2}+\sin\frac{x}{2} \right )+\left (

    \cos\frac{x}{2}-\sin\frac{x}{2} \right )}{\left ( \cos\frac{x}{2}+\sin

    \frac{x}{2} \right )-\left ( \cos \frac{x}{2}-\sin \frac{x}{2} \right

    )}=\cot ^{-1}\frac{2\cos \left ( x/2 \right )}{2\sin \left ( x/2 \right

    )}$$

    or $$\displaystyle y=\cot ^{-1}\cot \frac{x}{2}= \frac{x}{2}, $$
    $$\therefore \dfrac{dy}{dx}= \dfrac{1}{2}.$$
    Note: Here assumption taken  that $$\tan\frac{x}{2}\geq 1$$
  • Question 7
    1 / -0
    Let $$ \displaystyle f\left ( x \right ) $$ be defined by $$ \displaystyle f\left ( x \right )=\left\{\begin{matrix}\sin 2x & \text{if } 0< x\leq \dfrac{\pi}6\\ ax+b& \text{if } \dfrac{\pi}6< x\leq 1\end{matrix}\right. $$. The values of $$a$$ and $$b$$ such that $$ \displaystyle f $$ and $$ \displaystyle {f}' $$ are continuous, are
    Solution
    For $$f$$ to be continuous
    $$\displaystyle \frac { \sqrt { 3 }  }{ 2 } =f\left( \frac { \pi  }{ 6 }  \right) =\displaystyle \lim_{ x\rightarrow \tfrac { \pi  }{ 6 }^+ } f\left( x \right) =\displaystyle\lim_{ x\rightarrow \tfrac { \pi  }{ 6 } + } \left( ax+b \right) =\frac { a\pi  }{ 6 } +b$$
    $$\displaystyle f'\left( x \right) =\begin{cases} 2\cos { 2x } \quad \quad \text{if }0<x<\dfrac { \pi  }{ 6 }  \\ a\quad \quad \quad \quad \quad \text{if }\dfrac { \pi  }{ 6 } <x<1 \end{cases}$$
    $$\displaystyle f'\left( \frac { \pi  }{ 6 } + \right) =a$$ and $$\displaystyle f'\left( \frac { \pi  }{ 6 } - \right) =1$$
    Thus $$\displaystyle a=1,b=\frac { \sqrt { 3 }  }{ 2 } -\frac { \pi  }{ 6 } $$
  • Question 8
    1 / -0
    A polynomial $$f(x)$$ leaves remainder $$15$$ when divided by $$(x-3)$$ and $$(2x+1)$$ when divided by $$(x-1)^2$$. When $$f$$ is divided by $$(x-3)(x-1)^2,$$ the remainder is
    Solution
    Since function $$f(x)$$ leaves remainder $$15$$ when divided by $$x-3$$, therefore $$f(x)$$ can be written as 
    $$f(x)=(x-3)l(x)+15$$   ...(1)
    Also, $$f(x)$$ leaves remainder $$2x+1$$ when divided by $$(x-1)^2.$$
    Thus, $$f(x)$$ can also be written as 
    $$f\left( x \right)={ \left( x-1 \right)  }^{ 2 }m\left( x \right) +2x+1$$    ...(2)
    If $$R(x)$$ be the remainder when $$f(x)$$ is divided by $$(x-3)(x-1)^2,$$ then we may write
    $$f\left( x \right)=\left( x-3 \right) { \left( x-1 \right)  }^{ 2 }n\left( x \right) +R\left( x \right) $$    ...(3)
    Since $$(x-3)(x-1)^2$$ is a polynomial of degree three, the remainder has to be a polynomial of degree less than or equal to two. 
    Thus let $$R(x)=ax^2+bx+c$$
    From (1) and (3), we have
    $$f(3)=15=R(3)\Rightarrow 9a+3b+c=15$$    ...(4)
    From (2) and (3), we have
    $$f(1)=3=R(1)\Rightarrow a+b+c=3$$   ...(5)
    From (2) and (3), we have
    $$f'(1)=2=R'(1)\Rightarrow 2a+b=2$$   ...(6)
    Solving equation (4),(5) and (6), we get
    $$a=2,b=-2,c=3$$
  • Question 9
    1 / -0
    If $$f\left( x \right) $$ is a polynomial of degree $$n(>2)$$ and $$f\left( x \right) =f\left( k-x \right) ,($$ where $$k$$ is a fixed real number$$),$$ then degree of $$f'(x)$$ is
    Solution
    Clearly, $$f(x)$$ must be of the from
    $$f\left( x \right) ={ a }_{ 0 }\left[ { x }^{ n }+{ \left( k-x \right)  }^{ n } \right] +{ a }_{ 1 }\left[ { x }^{ n-1 }+{ \left( k-x \right)  }^{ n-1 } \right] +...+{ a }_{ n-1 }\left[ x+\left( k-x \right)  \right] +{ a }_{ n. }$$
    It may be noted that $$n$$ must be even for otherwise $$f(x)$$ will become a polynomial of degree $$n-1.$$
    Clearly, $$f'(x)$$ is a polynomial of degree $$n-1.$$
  • Question 10
    1 / -0
    If for all $$x,y$$ the function $$f$$ is defined by $$f\left( x \right)+f\left( y \right)+f\left( x \right).f\left( y \right)=1$$ and $$f\left( x \right)>0$$, then
    Solution
    Putting $$x=0,y=0,$$ we get 
    $$2f(0)+{ \left\{ f\left( 0 \right)  \right\}  }^{ 2 }=1\Rightarrow f\left( 0 \right) =\sqrt { 2 } -1\quad \left( \because f\left( x \right) >0 \right) $$
    Putting $$y=x,2f(x)+{ \left\{ f\left( x \right)  \right\}  }^{ 2 }=1$$
    Differentiating w.r.t. $$x,$$ we get 
    $$2f'\left( x \right) +2f\left( x \right) .f'\left( x \right) =0\quad f'\left( x \right) \left\{ 1+f\left( x \right)  \right\} =0$$
    $$\Rightarrow f'\left( x \right) =0,$$ because $$f\left( x \right) >0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now