Self Studies

Differentiation...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{\sqrt{x}-x}{1+x^{3/2}} \right ) \right )$$ equals $$\displaystyle ($$for $$x\geq 0)$$

  • Question 2
    1 / -0

    The area of the triangle whose vertices are $$A(1,1), B(7, 3)$$ and $$C(12, 2)$$ is

  • Question 3
    1 / -0

    $$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{a-x}{1+ax} \right ) \right )$$ equals if ax > -1

  • Question 4
    1 / -0

    If $$f(x) = \displaystyle \left | \cos x-\sin x \right |$$ then $$\displaystyle f'\left ( \dfrac{\pi}4 \right )$$ is equal to-

  • Question 5
    1 / -0

    If $$\displaystyle y=\frac{1}{1+x^{\beta -\alpha}+x^{\gamma -\alpha}}+\frac{1}{1+x^{\alpha-\beta}+x^{\gamma -\beta }}+\frac{1}{1+x^{\alpha -\gamma }+x^{\beta-\gamma }}$$
    then $$\displaystyle \frac{dy}{dx}$$ is equal to-

  • Question 6
    1 / -0

    If $$\displaystyle y=\left | \cos x \right |+\left | \sin x \right |$$ then $$\displaystyle \frac{dy}{dx}$$ at $$x=\dfrac{2\pi }{3}$$ is:

  • Question 7
    1 / -0

    $$\displaystyle \frac{d}{d\theta }\left ( \tan ^{-1}\left ( \frac{1-\cos \theta }{\sin \theta } \right ) \right )$$ equals if $$\displaystyle-\pi <\theta <\pi $$

  • Question 8
    1 / -0

    Find the area of the right-angled triangle whose vertices are $$(2, -2)$$ , $$(-2, 1)$$ and $$(5, 2).$$

  • Question 9
    1 / -0

    Find the area of the triangle whose vertices are $$(a, b + c), (a, b - c)$$ and $$(-a, c)$$.

  • Question 10
    1 / -0

    Let $$\displaystyle y=(1+x^{2})\tan^{-1}(x-x)$$ and $$\displaystyle f(x)=\frac1{2x}\frac {dy}{dx},$$ then $$f(x)+\cot^{-1}x$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now