Self Studies

Differentiation Test 21

Result Self Studies

Differentiation Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{\sqrt{x}-x}{1+x^{3/2}} \right ) \right )$$ equals $$\displaystyle ($$for $$x\geq 0)$$
    Solution
    Let,  $$\displaystyle y=\tan ^{-1}\left ( \frac{\sqrt{x}-x}{1+x^{3/2}} \right )$$
    $$\displaystyle y=\tan ^{-1}(\sqrt{x})-\tan ^{-1}x$$
    $$\therefore \displaystyle \frac{dy}{dx}=\frac{1}{(1+x)}\times \frac{1}{2\sqrt{x}}-\frac{1}{1+x^{2}}$$
  • Question 2
    1 / -0
    The area of the triangle whose vertices are $$A(1,1), B(7, 3)$$ and $$C(12, 2)$$ is
    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$\cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$
    $$\therefore$$
    Area $$= \dfrac{1}{2} [1(1)+ 7(1)+ 12(-2)] = -8$$, but area can not be negative
    Hence, area = 8 square units.
  • Question 3
    1 / -0
    $$\displaystyle \frac{d}{dx}\left ( \tan ^{-1}\left ( \frac{a-x}{1+ax} \right ) \right )$$ equals if ax > -1
    Solution
    Let,  $$\displaystyle y=\tan ^{-1}\left ( \frac{a-x}{1+ax} \right )$$
    $$\displaystyle y=\tan ^{-1}(a)-\tan ^{-1}(x)$$
    $$\therefore \displaystyle \frac{dy}{dx}=-\frac{1}{1+x^2}$$
  • Question 4
    1 / -0
    If $$f(x) = \displaystyle \left | \cos x-\sin x \right |$$ then $$\displaystyle f'\left ( \dfrac{\pi}4 \right )$$ is equal to-
    Solution
    $$f\left( x \right) =\left| \cos { x } -\sin { x }  \right| $$
    $$\displaystyle =\begin{cases} \cos { x-\sin { x } \quad \quad x<\dfrac { \pi  }{ 4 }  }  \\ -\cos { x+\sin { x }  } \quad x>\dfrac { \pi  }{ 4 }  \end{cases}$$
    $$\displaystyle f'\left( x \right) =\begin{cases} -\sin { x } -\cos { x } \quad x<\dfrac { \pi  }{ 4 }  \\ +\sin { x+\cos { x } \quad x>\dfrac { \pi  }{ 4 }  }  \end{cases}$$
    Hence $$\displaystyle f'\left( \dfrac { \pi  }{ 4 }  \right) $$ does not exists.
  • Question 5
    1 / -0
    If $$\displaystyle y=\frac{1}{1+x^{\beta -\alpha}+x^{\gamma -\alpha}}+\frac{1}{1+x^{\alpha-\beta}+x^{\gamma -\beta }}+\frac{1}{1+x^{\alpha -\gamma }+x^{\beta-\gamma }}$$
    then $$\displaystyle \frac{dy}{dx}$$ is equal to-
    Solution
    $$\displaystyle y=\frac{1}{1+x^{\beta -\alpha}+x^{\gamma -\alpha}}+\frac{1}{1+x^{\alpha-\beta}+x^{\gamma -\beta }}+\frac{1}{1+x^{\alpha -\gamma }+x^{\beta-\gamma }}$$
    $$\displaystyle y=\frac{1}{\displaystyle 1+\frac{x^{\beta }}{x^{\alpha}}+\frac{x^{\gamma }}{x^{\alpha} }}+\frac{1}{{\displaystyle 1+\frac{x^{\alpha }}{x^{\beta}}+\frac{x^{\gamma }}{x^{\beta} }}}+\frac{1}{\displaystyle 1+\frac{x^{\alpha}}{x^{\gamma} }+\frac{x^{\beta} }{x^{\gamma }}}$$
    $$\displaystyle y=\frac{x^{\alpha }+x^{b}+x^{\gamma }}{x^{\alpha }+x^{\beta }+x^{\gamma }}=1$$
    $$\therefore \cfrac{dy}{dx}=0$$
  • Question 6
    1 / -0
    If $$\displaystyle y=\left | \cos x \right |+\left | \sin x \right |$$ then $$\displaystyle \frac{dy}{dx}$$ at $$x=\dfrac{2\pi }{3}$$ is:
    Solution
    In the neighborhood of $$\:x=\dfrac{2\pi}3$$
    $$\Rightarrow  y=-\cos\:x+\sin\:x$$
    $$\Rightarrow \left ( \cfrac{dy}{dx} \right )=\sin\:x+\cos\:x$$
    Thus at$$\:x=\dfrac{2\pi}3$$
    $$\cfrac{dy}{dx}=\dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}=\dfrac{1}{2}\left ( \sqrt{3}-1 \right )$$
  • Question 7
    1 / -0
    $$\displaystyle \frac{d}{d\theta }\left ( \tan ^{-1}\left ( \frac{1-\cos \theta }{\sin \theta } \right ) \right )$$ equals if $$\displaystyle-\pi <\theta <\pi $$
    Solution
    $$\dfrac{1-\cos \left(x\right)}{\sin \left(x\right)}$$
    Let $$u=\dfrac{x}{2}$$
    $$=\dfrac{-\left(1-2\sin ^2\left(u\right)\right)+1}{2\cos \left(u\right)\sin \left(u\right)}$$
    $$=\dfrac{\sin \left(u\right)}{\cos \left(u\right)}$$
    $$=\tan \left(u\right)=tan(\dfrac{x}{2})$$
    So,
    $$\frac{d}{dθ}\left(\arctan \left(\frac{1-\cos \left(θ\right)}{\sin \left(θ\right)}\right)\right)=\frac{d}{dθ}\left(\arctan \left(tan\frac{\theta}{2}\right)\right)=\dfrac{d}{d\theta}(\dfrac{\theta}{2})=\dfrac{1}{2}$$
  • Question 8
    1 / -0
    Find the area of the right-angled triangle whose vertices are $$(2, -2)$$ , $$(-2, 1)$$ and $$(5, 2).$$
    Solution

    Let the points be $$ A(2,-2), B(-2,1), C(5,2) $$.

    Distance between two points $$ \left( { x }_{ 1 },{ y }_{ 1} \right) $$ and $$ \left( { x }_{ 2 },{ y }_{ 2 } \right) $$ can be calculated using the formula $$ \sqrt { \left( { x }_{ 2 }-{ x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$

    Hence, Length of side AB $$ = \sqrt { \left(-2-2 \right) ^{ 2 }+\left(1 + 2\right) ^{ 2 } } = \sqrt { 16+ 9 } = \sqrt { 25 }  = 5 $$ 

    Length of side BC $$ = \sqrt {\left(5 + 2\right) ^{ 2 }+\left(2-1\right) ^{ 2 } } = \sqrt { 49 + 1 } = \sqrt { 50} $$

    Length of side AC $$ = \sqrt { \left(5-2 \right) ^{ 2 }+\left(2+ 2\right) ^{ 2 } } = \sqrt { 9+16 } = \sqrt { 25 }  = 5 $$

    Since, $$ {(\sqrt { 50 }) }^{2} = { 5 }^{2} + { 5 }^{2} $$,
    $$ \Rightarrow {BC}^{2} ={AB}^{2} + {AC}^{2} $$
    Hence, the triangle has a right angle at $$A$$, with $$AB$$ and $$AC$$ as base and height.
    So, area of the triangle $$ABC = \cfrac {1}{2} \times base \times height = \cfrac {1}{2} \times 5 \times 5= \cfrac {25}{2}$$ sq  units.
  • Question 9
    1 / -0
    Find the area of the triangle whose vertices are $$(a, b + c), (a, b - c)$$ and $$(-a, c)$$.
    Solution
    Area of a triangle $$ (A) =\left| \cfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (a,b+c) $$ , $$({ x }_{ 2

    },{ y }_{ 2 }) = (a,b-c) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (-a,c) $$ 

    $$ A=\left| \cfrac { a(b-c-c)+a(c-b-c)-a(b+c-b+c) }{ 2 }  \right| $$
    $$=\left| \cfrac { a(b-2c)+a(-b)-a(2c) }{ 2 }  \right|$$
    $$ =\left| \cfrac { ab-2ac-ab-2ac }{ 2 }  \right| $$
    $$=\left| \cfrac { -4ac }{ 2 }  \right| $$
    $$=2ac$$  square units 
  • Question 10
    1 / -0
    Let $$\displaystyle y=(1+x^{2})\tan^{-1}(x-x)$$ and $$\displaystyle f(x)=\frac1{2x}\frac {dy}{dx},$$ then $$f(x)+\cot^{-1}x$$ is equal to
    Solution
    $$\displaystyle y=(1+x^{2})\tan^{-1}(x-x)$$
    $$\Rightarrow \displaystyle \dfrac {dy}{dx}=2x\tan^{-1}x+(1+x^2).\dfrac{1}{1+x^2}-1=2x\tan^{-1}x$$
    $$\displaystyle\Rightarrow  f(x)= \dfrac {\dfrac {dy}{dx}}{2x}=\tan^{-1}x$$
    $$\therefore \displaystyle f(x)+\cot^{-1}x= \tan^{-1}+\cot^{-1}x=\dfrac {\pi}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now