Self Studies

Differentiation Test 22

Result Self Studies

Differentiation Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The  triangle with vertices A(4, 4), B(-2, -6) and C(4, -1) is shown in the diagram. The area of $$\Delta$$ ABC is _______

    Solution
    We know that the area of the triangle whose vertices are $$\displaystyle (x_{1},y_{1}),(x_{2},y_{2}),$$ and $$(x_{3},y_{3})$$ is $$= \cfrac{1}{2}\left | x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1}) +x_{3}(y_{1}-y_{2})\right |$$

    $$=\dfrac{1}{2}|4(-6-(-1))-2(-1-4)+4(4-(-6))|$$

    $$=\dfrac{1}{2}|4(-5)-2(-5)+4(10)|$$

    $$=\dfrac{1}{2}|30|$$

    $$=15 $$ sq. units

  • Question 2
    1 / -0
    Three points A, B and C have coordinates $$(a, b + c), \ (b, c + a)$$ and $$(c, a + b)$$, respectively. The area of the triangle ABC will be:
    Solution
    Area of triangle $$=\dfrac{ 1 }{ 2 }\left[ { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) \right] $$

    Given the points: $$A(a, b+c) , B(b, c+a) , C(c, a+b)$$
    Therefore, area:

    $$A =\dfrac{ 1 }{ 2 }\left[ a(c+a-a-b)+b(a+b-b-c)+c(b+c-c-a) \right]$$ 

    $$A =\dfrac{ 1 }{ 2}{\left[ a(c-b)+b(a-c)+c(b-a) \right]  }$$

    $$A=\dfrac{ 1 }{ 2}{\left[ ac-ab+ba-bc+cb-ac \right]  }=0$$
  • Question 3
    1 / -0
    The number of positive fractions $$\dfrac{m}{n}$$ such that $$\dfrac{1}{3}< \dfrac{m}{n}<1 $$ and having the property that the fraction remains the same by adding some positive integer to the numerator and multiplying the denominator by the same positive integer is:
    Solution
    Given $$m,n$$ are integers $$\dfrac{1}{3}<\dfrac{m}{n}<1$$
    $$\Rightarrow  \dfrac{m+x}{nx}=\dfrac{m}{n}$$
    $$\Rightarrow m+x=mx$$
    $$\Rightarrow x=\dfrac{m}{m-1},$$   $$x$$ must be an integer.
    So only possible value of $$m$$ satisfying above equation is $$2.$$
    $$\Rightarrow  m=2$$
    $$\Rightarrow  \dfrac{m}{n}>\dfrac{1}{3}\Rightarrow 3m>n\Rightarrow 6>n$$

    $$\Rightarrow  \dfrac{m}{n}<1\Rightarrow m<n\Rightarrow 2<n$$
    $$\Rightarrow  n=3,4,5$$
    $$\therefore 3$$ Possible fractions.
    Hence, the answer is $$3.$$
  • Question 4
    1 / -0
    $$\displaystyle \frac{d}{dx}\left ( x^{\log x} \right )$$ is equal to
    Solution
    $$\displaystyle \dfrac { d }{ dx } \left( x^{ \log  x } \right) =\dfrac { d }{ dx } \left( { e }^{ \log { x } \log { x }  } \right) $$
    $$\displaystyle =\dfrac { d }{ dx } \left( { \left( \log { x }  \right)  }^{ 2 } \right) { e }^{ { \left( \log { x }  \right)  }^{ 2 } }$$
    $$\displaystyle =2\log { x } \dfrac { d }{ dx } \left( \log { x }  \right) { e }^{ { \left( \log { x }  \right)  }^{ 2 } }$$
    $$\displaystyle ={ e }^{ { \left( \log { x }  \right)  }^{ 2 } }2\log { x } \left( \dfrac { d }{ dx } \left( \log { x }  \right)  \right) $$
    $$\displaystyle =\dfrac { 1 }{ x } 2\log { x } { e }^{ { \left( \log { x }  \right)  }^{ 2 } }=2x^{ \log { x } -1 }\log { x } $$
  • Question 5
    1 / -0
    If $$\displaystyle y= \frac {\sqrt[3]{1+3x}\sqrt[4]{1+4x}\sqrt[5]{1+5x}}{\sqrt[7]{1+7x}\sqrt[8]{1+8x}}$$, then $$y'(0)$$ is equal to
    Solution
    $$\displaystyle y= \frac {\sqrt[3]{1+3x}\sqrt[4]{1+4x}\sqrt[5]{1+5x}}{\sqrt[7]{1+7x}\sqrt[8]{1+8x}}$$
    Take log both sides,
    $$\displaystyle \log y = \frac{1}{3}\log(1+3x)+\frac{1}{4}\log(1+4x)+\frac{1}{5}\log(1+5x)-\frac{1}{7}\log(1+7x)-\frac{1}{8}\log(1+8x)$$
    Differentiating both side w.r.t $$x$$
    $$\displaystyle

    \frac {1}{y}\times \frac {dy}{dx}=\frac {1}{(1+3x)}+\frac

    {1}{1+4x}+\frac {1}{1+5x}-\frac {1}{1+7x}-\frac {1}{1+8x}$$
    at $$x=0, y=1$$,  
    $$\therefore \displaystyle \frac {dy}{dx}=1+1+1-1-1=1$$
  • Question 6
    1 / -0
    $$(3, 1), (-3, 2)$$ and $$\displaystyle (0,2-\sqrt{3})$$ are the vertices of __________ triangle of area ___________.
    Solution

    Distance between two points $$= \sqrt { \left( { x }_{ 2 }-{x }_{ 1 } \right) ^{ 2 }+\left( { y }_{ 2 }-{ y }_{ 1 } \right) ^{ 2 } } $$
    Distance between the points $$A (3,1) $$ and $$B (-3,2) = \sqrt { \left( -3-3 \right) ^{ 2 }+\left( 2 - 1 \right) ^{ 2 } } = \sqrt { 36 + 1 } = \sqrt { 37 }$$

    Distance between the points $$B(-3,2) $$ and $$C (0,2-\sqrt {3}) = \sqrt { \left( 0 + 3 \right) ^{ 2 }+\left(2 - \sqrt {3} - 2\right) ^{ 2 } } = \sqrt { 9 + 3 } = \sqrt { 12 } $$

    Distance between the points $$A(3,1) $$ and $$ C(0,2-\sqrt {3})$$

    $$ = \sqrt { \left( 0-3\right) ^{ 2 }+\left( 2-\sqrt {3} - 1\right) ^{ 2 } } = \sqrt { 9 + 1 + 3 -2\sqrt {3} } = \sqrt { 13 - 2\sqrt {3} } $$

    Since the length of the sides between all vertices are different, they are the vertices of  a scalene triangle. 

    Area of a triangle $$= \left| \cfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Area of $$\triangle ABC= \left| \cfrac {  (3)(2-2+\sqrt {3})+(-3)(2-\sqrt {3} - 1)+0(1-2) }{ 2 } \right| $$

    $$ = \left| \cfrac { 3\sqrt {3} -3 + 3\sqrt {3} }{ 2 }  \right| $$

    $$ = \cfrac{-3 + 6 \sqrt {3}}{2}$$ sq. units

  • Question 7
    1 / -0
    If the coordinates of two points A and B are $$(3, 4)$$ and $$(5, -2)$$, respectively, then the coordinates of any point P if $$PA = PB$$ and area of $$\displaystyle \Delta PAB=10$$ is
    Solution
    Let P $$ = (x, y) $$
    Given, $$ PA = PB $$
    $$=> {PA}^{2} = {PB}^{2} $$
    $$ => {(x-3)}^{2} + {(y-4)}^{2} = {(x-5)}^{2} + {(y+2)}^{2} $$
    $$=>  {x} ^{2} -6x + 9 + {y} ^{2} -8y + 16 = {x}^{2} -10x + 25 + {y}^{2} + 4y + 4 $$
    $$=>  4x - 12y = 4 $$
    $$=> x - 3y = 1 $$                      .......(i)

    Also, Area of $$ \Delta PAB=10 $$
    $$\left| \cfrac {x (4+2)+3(-2-y)+5(y-4)}{ 2 } \right|=10 $$
    $$ \left| \cfrac { 6x -6-2y +5y -20 }{ 2 } \right|  = 10 $$
    $$ \cfrac {6x+3y -26}{2}  = \pm 10 $$

    $$ 6x+2y-26= \pm 20 $$
    $$ 6x+2y = 46  $$                     ........(ii)
    or $$ 6x + 2y = 6 $$                                  .......(iii)
    Solving equation (i) and (ii), we get $$ x = 7, y = 2 $$ 
    Solving equation (i) and (iii), we get $$ x = 1, y = 0 $$.
    So, the co-ordinates of P are $$ (7, 2)$$ or $$(1, 0) $$.
  • Question 8
    1 / -0
    - nmmn - mmnm - mnnm -
    Solution
    The series is n n m m / n n m m / n n m m / n n m m 
  • Question 9
    1 / -0
    Find pair of consecutive odd natural numbers, both of which are larger than 13 such that their sum is less than 40
    Solution
    Let the consecutive odd numbers be $$ x, x + 2 $$

    Given, $$ x > 13 $$  -- (1)

    Also, $$ x + 2 > 13 $$
    $$ x > 11 $$  -- (2)

    And $$ x + x + 2 < 40 $$
    $$ 2x + 2 < 40 $$
    $$ 2x < 38 $$
    $$ x < 19 $$  -- (3)

    From, $$ 1, 2, 3 $$
    $$ 13 < x < 19 $$
    This means, the numbers are $$ 15, 17 $$
  • Question 10
    1 / -0
    In  the following question, the numbers/letters are arranged based on some pattern or principle.Choose the correct answer for the term marked by the symbol (?) 

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now