Self Studies

Differentiation Test 23

Result Self Studies

Differentiation Test 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the area of a triangle is $$68 $$ sq. units and the vertices are $$(6, 7), (-4, 1)$$ and $$(a, -9) $$ then the value of $$a$$ is 
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is:
    $$A= \left| \dfrac { {x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (6,7) $$ ; $$({ x }_{ 2

    },{ y }_{ 2 }) = (-4,1) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (a,-9)$$ in the formula for area, we get:

    Area of triangle $$ = \left| \dfrac {  (6)(1+9)+(-4)(-9-7) + a(7-1) }{ 2 } 

    \right|  = 68 $$
    $$ \left| \dfrac { 60 + 64 + 6a }{ 2 }  \right|  = 68 $$
    $$ \dfrac{124 + 6a}{2}  = 68 $$
    $$  124 + 6a = 136 $$
    $$  6a = 12 $$
    $$ \implies a = 2 $$

  • Question 2
    1 / -0
    The coordinates of $$A$$ for which area of triangle, whose vertices are $$A(a, 2a),\  B(-2, 6)$$ and $$C(3, 1)$$ is $$10$$ square units, are:

    Solution
    Given: Vertices of the triangle are $$A(a, 2a),\ B(-2, 6),\ C(3,1)$$

    The area of the triangle is $$10$$ square units.

    $$\Rightarrow \dfrac{1}{2}\bigg | a(6-1)+(-2)(1-2a)+3(2a-6) \bigg |=10$$

    $$\Rightarrow 5a-2+4a+6a-18=20$$

    $$\Rightarrow 15a=40$$

    $$\Rightarrow a=\dfrac{40}{15}=\dfrac{8}{3}$$

    $$\therefore $$ The coordinates of vertex $$A $$ are $$\displaystyle  \left ( \dfrac{8}{3}, \frac{16}{3} \right )$$
  • Question 3
    1 / -0
    In the following question, the numbers/letters are arranged based on some pattern or principle. Choose the correct answer for the term marked by the symbol (?) 
    $$0,\,3,\,9,\,18,\,30,\,?$$
    Solution
    The difference between the consecutive numbers increases by $$3$$.
    $$3-0 = 3$$
    $$9 - 3 = 6$$
    $$18-9 = 9$$
    $$30-18 = 12$$.
    Pattern is adding multiples of 3
    Next term is $$30+15=45$$
  • Question 4
    1 / -0
    If the area of a triangle formed by the points (k, 2k) (-2, 6) and (3, 1) is 20 square units. Find the value of k.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y

    }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { {

    x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{

    3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$

    Hence, area of the triangle with given vertices
    $$ \left| \frac { k(6-1)-2(1-2k)+3(2k-6) }{ 2 }  \right|  = 20 $$

    $$ \Longrightarrow \left| \frac { 6k-k-2+4k+6k-18 }{ 2 }  \right| = 20 $$

    $$ \left| \frac { 15k-20 }{ 2 }  \right|  = 20 $$

    $$ \left| 15k-20 \right|  = 40 $$

    $$ 15k - 20 = 40 $$

    $$ 15k = 60 $$

    $$ k = 4$$

  • Question 5
    1 / -0
    YEB, CFI, DHL, ....
    Solution
    First letter of each term is -2 steps; Second of each term +1, +2, +3, +4 steps forward Third letter is alternatively moved +2, +3 steps
  • Question 6
    1 / -0
    There are 8 buses running from Kota to Jaipur and 10 buses running from Jaipur to Delhi. In how many ways a Person can travel from Kota to Delhi via Jaipur by bus?
    Solution
    Let $$E_1$$ be the event of travelling from Kota to Jaipur & $$E_2$$ be the event of travelling from Jaipur to Delhi by the person.
     $$E_1$$ can happen in 8 ways and $$E_2$$ can happen in 10 ways. 
    Since both the events $$E_1$$ and $$E_2$$ are to be happened 12 in order, simultaneously,the number of ways $$=8\times10=80$$
  • Question 7
    1 / -0
    Find the missing letters
    A, B, D, G, .....
    Solution
    Pattern is $$\displaystyle  ^{1}A,^{1}A+1,^{2}B+2,^{4}D+3,^{7}G+4,^{11}K$$ 
    $$\displaystyle \therefore $$ Missing letter = K
  • Question 8
    1 / -0
    Find the missing letters
    M, N, O, L, R, I, V, ........
    Solution
    Pattern is combination of two patterns M, O, R, V, A, .... and N, L, I, H, .......
    $$\displaystyle ^{13}M,^{14}N,^{15}O,^{11}L,^{18}R,^{9}I,^{22}V,^{8}H,$$ .....
    $$\displaystyle \therefore $$ Missing letter = H
  • Question 9
    1 / -0
    The area of triangle formed by $$(0, 0), (0, a)$$ and $$(b, 0)$$ is .......... .
    Solution
    The area of a triangle formed by joining the points $$(x_1, y_1)$$, $$(x_2, y_2)$$ and $$(x_3, y_3)$$ is

    $$A=\dfrac { 1 }{ 2 } \bigg| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \bigg|$$

    Therefore, the area of a triangle formed by joining the points $$(0, 0)$$, $$(0, a)$$ and $$(b, 0)$$ is:

    $$A=\dfrac { 1 }{ 2 } \bigg| 0(0-b)+a(b-0)+0(0-0) \bigg| $$

         $$=\dfrac { 1 }{ 2 } \bigg| 0+ab \bigg| $$

         $$=\bigg| \dfrac { ab }{ 2 }  \bigg|$$
     
    Hence, the area of the triangle is $$\left| \dfrac { ab }{ 2 }  \right|$$  
  • Question 10
    1 / -0
    The midpoints of the sides of triangle $$ABC$$ are $$ (-1,-2), (6,1)$$ and $$(3,5) $$. The area of $$\displaystyle \triangle ABC$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Area of triangle formed with midpoints
    $$\displaystyle =\frac{1}{2}\left [ -1\left ( 1-5 \right )+6\left ( 5+2 \right )+3\left ( -2-1 \right ) \right ]$$
    $$\displaystyle =\frac{37}{2}$$
    $$\displaystyle \therefore $$ Area of $$\displaystyle \Delta ABC=4\times \frac{37}{2}=74$$ square units.  
    $$[\because$$ Area of triangle formed by joining mid-points of the sides of given triangle is $$\left(\dfrac{1}{4}\right)^{th}$$ of the area of original triangle $$]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now