Self Studies

Differentiation Test 24

Result Self Studies

Differentiation Test 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    There is no symmetry in symmetry in legs of Fig
    Solution
    There is no symmetry in legs of Fig.(e)
  • Question 2
    1 / -0
    The area of a triangle with the vertices $$(1, 2), (3, 4)$$ and $$(5, 6)$$, is ____ square units.
    Solution
    Area of the triangle with three vertices $$(x_1,y_1)$$, $$(x_2,y_2)$$ and $$(x_3,y_3)$$ is

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    Therefore, the area of triangle with vertices $$(1,2)$$, $$(3,4)$$ and $$(5,6)$$ is:

    $$A=\dfrac { 1 }{ 2 } \left| 2(3-5)+4(5-1)+6(1-3) \right| =\dfrac { 1 }{ 2 } \left| -4+16-12 \right| =\dfrac { 1 }{ 2 } \left| 16-16 \right| =\dfrac { 1 }{ 2 } \left| 0 \right| =0$$

    Hence, the area of the triangle is $$0$$.
  • Question 3
    1 / -0
    $$L, M$$ and $$N$$ are the midpoints of the sides $$BC, CA$$ and $$AB$$ respectively of triangle $$ABC$$. If the vertices are $$A(3,-4), B(5,-2)$$ and $$C(1,3)$$ the area of $$\displaystyle \triangle LMN$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$

    Let $$(x_1,y_1)$$ $$=(3,-4)$$, $$(x_2,y_2)$$ $$=(5,-2)$$ and $$(x_3,y_3)$$ $$=(1,3)$$

    Area of $$\displaystyle \Delta ABC=\dfrac{1}{2}\left [ 3\left ( -2-3 \right )+5\left ( 3+4 \right )+1\left ( -4+2 \right ) \right ]$$ 

    $$=\dfrac{1}{2}\left ( -15+35-2 \right )$$

    $$=9$$
    $$\displaystyle \therefore $$ Area of $$\displaystyle \Delta LMN=\frac{1}{4}\times 9=2.25$$ square units.
  • Question 4
    1 / -0
    - T - CN - P - NT - C
    Solution
    The series is N T P C / N T P C / N T P C
  • Question 5
    1 / -0
    If coordinates of P,Q, and R are (3,6),(-1,3) and (2,-1) respectively. Then area of $$\displaystyle \triangle PQR$$ is ____ square units.
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    $$ = \dfrac{1}{2} \times [ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] $$
    Area of $$\displaystyle \Delta PQR$$ is given by
    $$\displaystyle =\frac{1}{2}\left [ 3\left ( 3+1 \right )-1\left ( -1-6 \right )+2\left ( 6-3 \right ) \right ]$$
    $$\displaystyle =\frac{1}{2}\left ( 12+7+6 \right )=12.5$$ square units.
  • Question 6
    1 / -0
    The area of the triangle formed by the points $$(2, 6), (10, 0)$$ and $$(0, k)$$ is zero square units. Find the value of $$k.$$
    Solution
    The area of the triangle is:

    $$A=\dfrac { 1 }{ 2 } \left| { y }_{ 1 }({ x }_{ 2 }-{ x }_{ 3 })+{ y }_{ 2 }({ x }_{ 3 }-{ x }_{ 1 })+{ y }_{ 3 }({ x }_{ 1 }-{ x }_{ 2 }) \right|$$

    We are given that the area of the triangle is $$0$$ and the points are $$(2,6)$$, $$(10,0)$$ and $$(0,k)$$, therefore,

    $$\Rightarrow 0=\dfrac { 1 }{ 2 } \left| 6(10-0)+0(0-2)+k(2-10) \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-0-8k \right| \\ \Rightarrow 0=\dfrac { 1 }{ 2 } \left| 60-8k \right| $$

    $$\Rightarrow 60-8k=0\\ \\ \Rightarrow 8k=60\\ \Rightarrow k=\dfrac { 60 }{ 8 } =\dfrac { 15 }{ 2 }$$
     
    Hence, $$k=\dfrac { 15 }{ 2 }$$.
  • Question 7
    1 / -0
    In a certain language '$$ \displaystyle +\div ?   $$' means 'where are you' , '$$ \displaystyle @-\div    $$' means ' we are here' , and '$$ \displaystyle +@\times    $$' means ' you come here' What is the code for ' Where' ?
    Solution
    s.no                        code                                                 sentence 
    1.                   $$ \displaystyle '+\div ?'    $$                                                  Where are you
    2.                   $$ \displaystyle '@-\div '    $$                                                 We are here
    3.                   $$ \displaystyle '+@\times    $$                                                   you come here

    As we can see that where is only in sentence $$1$$ [Where is the word for which we have to find the code ] Therefore we need to gather the codes for $$are$$ & $$you$$ to find out the code for where sentence 1 & 2 have the word $$are$$ in common and the symbol  $$ \displaystyle \div    $$ in common Therefore $$ \displaystyle \div    $$ is the symbol for $$are$$ 
    Sentence 1 & 3 have the word you in common and the symbol + in common therefore + stands for $$you$$ 

    thus, leaving only ?, which stands for $$where$$
  • Question 8
    1 / -0
    Area of a triangle whose vertices are (0, 0), (2, 3) , (5, 8) is _______ square units.
    Solution
    Area of a triangle with vertices $$({ x }_{ 1 },{ y }_{ 1 })$$ ; $$({ x }_{ 2 },{ y }_{ 2 })$$  and $$({ x }_{ 3 },{ y }_{ 3 })$$  is $$ \left| \frac { { x }_{ 1 }({ y }_{ 2 }-{ y }_{ 3 })+{ x }_{ 2 }({ y }_{ 3 }-{ y }_{ 1 })+{ x }_{ 3 }({ y }_{ 1 }-{ y }_{ 2 }) }{ 2 }  \right| $$


    Hence, substituting the points $$({ x }_{ 1 },{ y }_{ 1 }) = (0,0) $$ ; $$({ x }_{ 2 },{ y }_{ 2 }) = (2,3) $$  and $$({ x }_{ 3 },{ y }_{ 3 }) = (5,8)$$ in the area formula, we get

    Area of triangle ABC  $$ = \left| \frac {  (0)(3-8)+(2)(8-0)+5(0-3) }{ 2 }  \right|  = \left| \frac { 16 -15 }{ 2 }  \right|  = \frac {1}{2} units $$

  • Question 9
    1 / -0
    Image

    Solution
    Suppose, the apple is $$x$$ and the pear is $$y$$
    Given in the question,

    $$2x+y=230 $$     eq—1

    And,
    $$y-x=5$$       eq—2

    So, from —2 
    $$y= 5+x$$        eq—3

    Putting eq—3 in eq—1

    $$2x+5+x=230$$

    $$3x+5=230$$

    $$3x=225$$

    $$x=\dfrac{225}{3}$$

    $$x=75$$

    Now from eq—3 

    $$y=5+75$$

    $$y=80$$

    So the value of a pear is $$80$$

    Hence Option D is the correct answer.
  • Question 10
    1 / -0
    In Hyderabad there are 5 routes to Begumpet from Kukatpally and 9 routes to Dilsukhnagar from Begumpet In how many ways can a person travel from Kukatpally to Dilsukhnagar via Begumpet?
    Solution
    This is an implication of AND principal so multiplication shall be done.
    So, number of ways $$=5\times9$$
                                      $$=45$$
    Hence, the answer is $$45.$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now