Self Studies

Differentiation Test 30

Result Self Studies

Differentiation Test 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the $$4^{th}$$ term of $${ \left( 9x-\cfrac { 1 }{ 3\sqrt { x }  }  \right)  }^{ 18 }$$.
    Solution
    We know that the $$r^{th}$$ term in expansion of $$(a+b)^n$$ is given by $$^nC_{r-1}a^{n+1-r}b^{r-1}$$
    Here $$a=9x, \ n=18 \  \And \ b=-\cfrac{1}{3\sqrt{x}}$$
    $$\therefore$$ the fourth term in expansion of $$\left (9x-\cfrac{1}{3\sqrt{x}}\right)^{18}$$ is $$^{18}C_{12} {x}^{6}\left (-\cfrac{1}{3\sqrt{x}}\right)^{12} =18564$$
  • Question 2
    1 / -0
    Find the area (in square units) of the triangle whose vertices are $$(a, b+c), (a, b-c) $$ and $$(-a, c). $$
    Solution
    Area of triangle having vertices $$(x_1,y_1), (x_2,y_2)$$ and $$(x_3,y_3)$$ is given by
    Area $$ = \dfrac{1}{2} \times |[ x_1 (y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) ] |$$
    Given the vertices of triangle,
    $$A (a,b+c) ,B(a,b-c) ,C(-a,c)$$
    Therefore, area is given by
    $$=\dfrac { 1 }{ 2 } |\left[ a\left[ b-c-c \right] +a\left[ c-b-c \right] +(-a)\left[ b+c-b+c \right]  \right]| \\ =\dfrac { 1 }{ 2 } |\left[ a(b-2c)+a(-b)-a(2c) \right]| \\ =\dfrac { 1 }{ 2 } |\left[ ab-2ac-ab-2ac \right]| =\left| \dfrac { -4ac }{ 2 }  \right| =2ac$$
  • Question 3
    1 / -0
    13, 74, 290, 650,.......
    Solution
    Here we observe the first term 13 can be written as: $$2^2+3^2$$
    Similarly other numbers can be written as:
    $$74: 5^2+7^2$$
    $$290: 11^2+13^2$$
    $$650: 17^2+19^2$$
    Here, we observe that all above term of series can be written as sum of squares of two prime numbers which comes next to it's previous pair.
    Like: $$(2,3);(5,7);(11,13);(17,19)$$ So, other pair of prime number will be $$ (23,29).$$
    Hence next term of given series will be: 
    $$\Rightarrow 23^2+29^2=1370$$
    So, correct answer is $$1370$$.

  • Question 4
    1 / -0
    If $$|x| < 1$$, then $$\dfrac{d}{dx}\left[1+\dfrac{p}{q}x+\dfrac{p(p+q)}{2!}\left(\dfrac{x}{q}\right)^2+\dfrac{p(p+q)(p+2q)}{3!}\left(\dfrac{x}{q}\right)^3....\infty\right]=$$
    Solution
    $$\dfrac{d}{dx}\left\{1+\dfrac{px}{q}+\dfrac{p(p+q)}{2!}\dfrac{x^2}{q^2}+\dots\right\}=\dfrac{p}{q}+\dfrac{p(p+q)}{2!}\dfrac{2x}{q^2}+\dfrac{p(p+q)(p+2q)}{3!}\dfrac{3x^2}{q^3}+\dots$$
    $$=\dfrac{p}{q}\left(1+\dfrac{(p+q)}{1!}\dfrac{x}{q}+\dfrac{(p+q)(p+2q)}{2!}\dfrac{x^2}{q^2}+\dots\right)$$
    Now, consider $$(1-a)^n=1-na+\dfrac{n(n-1)}{2!}x^2+\dots$$
    Put $$a=x$$ and $$n=-\left(1+\dfrac{p}{q}\right)$$
    $$\therefore (1-x)^{-\left(1+\frac{p}{q}\right)}=1+\dfrac{(p+q)}{q}x+\left[-\dfrac{(p+q)}{q}\left(-\dfrac{(p+q)}{q}-1\right)\right]\dfrac{x^2}{2!}\dots$$
    $$=1+\dfrac{(p+q)}{q}x+\left[\dfrac{(p+q)}{q}\left(\dfrac{(p+q+q)}{q}\right)\right]\dfrac{x^2}{2!}\dots$$
    $$=1+\dfrac{(p+q)}{q}x+\dfrac{(p+q)(p+2q)}{q^2}\dfrac{x^2}{2!}\dots$$
    Hence, 
    $$\dfrac{d}{dx}\left\{1+\dfrac{px}{q}+\dfrac{p(p+q)}{2!}\dfrac{x^2}{q^2}+\dots\right\}=\dfrac{p}{q}(1-x)^{-\left(1+\frac{p}{q}\right)}$$
    This is the required answer.
  • Question 5
    1 / -0
    Figures $$1$$ and $$2$$ are related in a particular manner. Establish the same relationship between figures $$3$$ and $$4$$ by choosing a figure from amongst the options.

    Solution
    Hexagon is rotating in anti-clockwise direction two times to get the next figure. (1 to 2).
    Same for getting the figure (3 to 4) rotate the figure in an anti-clockwise direction (two times) we will get the desired figure.
  • Question 6
    1 / -0
    Select the INCORRECT match
    Solution
    (a) $$MMMCCXLIX=3000+200+40+9=3249$$
    (b) $$MDCLXVII=1000+500+100+60+7=1667$$
    (c) $$CCXVII=217=200+17$$
    (d) $$CDXCIX=400+90+9=499$$
    Hence the correct match is option C.
  • Question 7
    1 / -0
    If D (3, -1), E (2, 6) and F (5, 7) are the vettices of the sides of $$\Delta DEF$$, the area of triangle DEF is sq. units. 
    Solution
    Area of triangle = $$\dfrac{1}{2} {x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)}$$

    Area of triangle $$DEF=|\dfrac{1}{2}(3(6-7)+2(7+1)+5(-1-6))|$$

                                        $$=|\dfrac{1}{2}(-3+16-35)|$$

                                         $$=11$$ sq. Units.
  • Question 8
    1 / -0
    A telephone number $$d_1d_2d_3d_4d_5d_6d_7$$ is called memorable if the prefix sequence $$d_1d_2d_3$$ is exactly the same as either of the sequence $$d_4d_5d_6$$ or $$d_5d_6d_7$$(or possibly both). If each $$d_1\epsilon\{x|0\leq x\leq 9, x\epsilon W\}$$, then number of distinct memorable telephone number is(are).
    Solution

  • Question 9
    1 / -0
    If $$(f(x))^{g(y)} = e^{f(x) - g(y)}$$ then $$\dfrac {dy}{dx} =$$.
    Solution
    $${ f\left( x \right)  }^{ g\left( y \right)  }={ e }^{ f\left( x \right)-g\left( y \right) }$$

    $$\log { { f\left( x \right) }^{ g\left( y \right)}  }={ f\left( x \right) -g\left( y \right)}$$

    $${ g\left( y \right)  }\log { { f\left( x \right)  } } ={ f\left( x \right) -g\left( y \right)  }$$

    $${ f\left( x \right) } =  { g\left( y \right)  }\left[  1+\log { { f\left( x \right) } }\right]$$       ...(1)

    $$f^{ 1 }\left( x \right) ={ g\left( y \right)  }\left[ \frac { f^{ 1 }\left( x \right)  }{ f\left( x \right)  }  \right] +g^{ 1 }\left( y \right) \times \left[ 1+\log { { f\left( x \right)  } }  \right] \times \frac { dy }{ dx } $$

    Rearranging,

    $$f^{ 1 }\left( x \right) \left[ \frac { f\left( x \right) -g\left( y \right)  }{ f\left( x \right) }  \right] =g^{ 1 }\left( y \right) \times \left[ 1+\log { { f\left( x \right)  } }  \right] \times \frac { dy }{ dx } $$

    from eqn. (1)

    $$f^{ 1 }\left( x \right) \left[ \frac { g\left( y \right) \times \log { f\left( x \right) }  }{ f\left( x \right)  }  \right] =g^{ 1 }\left( y \right) \times \left[ 1+\log { { f\left( x \right)  } }  \right] \times \frac { dy }{ dx } $$

    again, from eqn (1),

    $$f^{ 1 }\left( x \right) \left[ \frac { \log { f\left( x \right)  }  }{ \left[ 1+\log { { f\left( x \right)  } }  \right]}  \right] =g^{ 1 }\left( y \right) \times \left[ 1+\log { { f\left( x \right)  } }  \right] \times \frac { dy }{ dx } $$

    $$\frac { dy }{ dx } =\frac { f^{ 1 }\left( x \right)  }{ g^{ 1 }\left( y \right)  } \times \left[ \frac { \log { f\left( x \right)  }  }{ { \left[ 1+\log { { f\left( x \right)  } }  \right]  }^{ 2 } }  \right] $$



  • Question 10
    1 / -0
    If $$15! =2^{\alpha}\cdot 3^{\beta}\cdot 5^{\gamma}\cdot 7^{\delta}\cdot 11^{\theta}\cdot 13^{\Phi}$$, then the value of expression $$\alpha -\beta +\gamma -\delta +\theta -\Phi$$ is
    Solution
    $$15!=1\times 2\times 3\times 4 \times 5\times 6\times 7\times 8\times 9\times 10\times 11\times 12\times 13\times 14\times 15$$

    $$15!=2\times 3\times 2^2 \times 5\times 3\times 2 \times 7\times 2^3\times 3^2\times 2\times 5\times 11\times 3\times 2^2 \times 13\times 2\times 7 \times 3\times 5$$

    $$15!=2^{11}\times 3^6\times 5^3\times 7^ 2\times 11\times 13 $$

    $$\implies \alpha =11$$

    $$\implies \beta =6$$

    $$\implies \gamma=3$$

    $$\implies \delta =2$$

    $$\implies \theta =1$$

    $$\implies \Phi=1$$

    $$\alpha-\beta+\gamma-\delta+\theta-\Phi=11-6+3-2+1-1=6$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now