Self Studies

Differentiation Test 38

Result Self Studies

Differentiation Test 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$y=y(x)$$ and it follows the relation $$e^{xy^{2}}+y\cos(x^{2})=5$$ then $$y'(0)$$ is equal to
    Solution

  • Question 2
    1 / -0
    If $$y=a\ \sin\ x+b\ \cos\ x$$, then $$y^{2}+\left ( \dfrac{dy}{dx} \right )^{2}$$ is
    Solution
    $$y=a\sin{x}+b\cos{x}$$

    $$\dfrac{dy}{dx}=a\cos{x}-b\sin{x}$$

    $${y}^{2}+{\left(\dfrac{dy}{dx}\right)}^{2}={\left(a\sin{x}+b\cos{x}\right)}^{2}+{\left(a\cos{x}-b\sin{x}\right)}^{2}$$

    $$={a}^{2}{\sin}^{2}{x}+{b}^{2}{\cos}^{2}x+2ab\sin{x}\cos{x}+{a}^{2}{\cos}^{2}{x}+{b}^{2}{\sin}^{2}x-2ab\sin{x}\cos{x}$$

    $$={a}^{2}\left({\sin}^{2}{x}+{\cos}^{2}{x}\right)+{b}^{2}\left({\sin}^{2}{x}+{\cos}^{2}{x}\right)$$

    $$={a}^{2}+{b}^{2}$$ since $${\sin}^{2}{x}+{\cos}^{2}{x}=1$$

    $$=constant$$

  • Question 3
    1 / -0
    The total number of ways of arranging the letters $$AAABBBCCDEF$$ in a row such that letters $$C$$ are separated from one another is
    Solution

  • Question 4
    1 / -0
    The maximum number of points of intersection of $$7$$ staright lines and $$5$$ circles when $$3$$ straight lines are parallel and $$2$$ circles are concentric,is /are
    Solution

  • Question 5
    1 / -0
    Choose the odd one out . 
    Solution

  • Question 6
    1 / -0
    If $$f(x+y)=2f(x).f(y)$$ for all $$x,y$$, where $$f'(0)=3$$ and $$f'(4)=2$$ then $$f'(4)=3$$ is equal to
    Solution

  • Question 7
    1 / -0
    In how many ways atleast one horse and atleast one dog can be selected out of eight horses and seven dogs.
    Solution
    As we can either select or not select any horse; total ways for horses$$=2^r$$ ways to be excluded are when no horse is selected, which is only one way, therefore, favourable ways for horses$$=2^8-1$$
    similarly, favourable ways for dogs$$=2^7-1$$
    $$\Rightarrow$$ Total ways$$=(2^8-1)(2^7-1)$$.

  • Question 8
    1 / -0
    If y = sin $$^{-1} (x. \sqrt{1-x}+ \sqrt{x}\sqrt{1-x^2})$$, then $$\dfrac{dy}{dx} =$$
    Solution
    $$y=\sin^{-1}(x\sqrt{1-x}+\sqrt{x}\sqrt{1-x^2})\\ \quad=\sin^{-1}x+\sin^{-1}\sqrt x\\ \cfrac{dy}{dx}=\cfrac{1}{\sqrt{1-x^2}}+\cfrac{1}{\sqrt{1-x}}\times\cfrac{1}{2\sqrt{x}}\\ \quad=\cfrac{1}{\sqrt{1-x^2}}+\cfrac{1}{2\sqrt x\sqrt{1-x}}$$
  • Question 9
    1 / -0
    If $$64a^2+36b^2=400, ab=4 $$ , then $$8a+6b$$ is: 
    Solution
    Given  $$64a^2+36b^2=400,\quad ab=4$$
    We know 
    $$(a+b)^2=a^2+b^2+2ab$$
    therefore,
    $$(8a+6b)^2=(8a)^2+(6b)^2+2(8a)(6a)$$
                        $$=64a^2+36b^2+96ab$$
                        $$=400+96\times4$$
                        $$=400+384$$
    $$(8a+6b)^2=784$$
    $$8a+6b=\sqrt{784}$$
    $$8a+6b=28$$
  • Question 10
    1 / -0
    The number of positive integral solutions of the equation $$x _ { 1 } x _ { 2 } x _ { 3 } x _ { 4 } x _ { 5 } = 1050$$ is
    Solution
    We have,
    $${x_1}{x_2}{x_3}{x_4}{x_5} = 1050 = 2 \times 3 \times {5^2} \times 7$$
    Now,
    $$2,3$$ and $$7$$ can be put in any boxes $${x_1},{x_2},{x_3},{x_4}$$ and $${x_5}$$.
    Also $$5,5$$ can be distributed in $$5$$ boxes in
    $$^{2 + 5 - 1}{C_{5 - 1}}{ = ^6}{C_4} = 15$$Ways.
    So total no. of positive integral solutions $$=15 \times5 \times5 \times5$$
    $$=1875$$
    Option $$D$$ is correct answer.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now