Self Studies

Differentiation Test 42

Result Self Studies

Differentiation Test 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The letters of word 'ZENITH' are written in all positive ways. If all these words are written in the order of a dictionary, then the rank of the word 'ZENITH' is
    Solution
    The total number of words is $$6! = 720$$. Let us write the letters of word ZENITH alphabetically, i.e, EHINTZ.
    For ZENITH word starts withWord starting withNumber of words
    $$Z$$$$E$$$$5!$$
    $$H$$$$5!$$
    $$I$$$$5!$$

    $$N$$$$5!$$

    $$T$$$$5!$$
    ZENZEH$$3!$$

    ZEI$$3!$$
    ZENIZENH$$2$$
    ZENITZENIH$$1$$
    Total number of words before ZERNITH$$615$$
    Hence, there are $$615$$ words before ZENITH, so the rank of ZENITH is $$616$$.
  • Question 2
    1 / -0
    $$ f(x)=x^{2}+x g^{\prime}(1)+g^{\prime \prime}(2) $$ and $$ g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x) $$
    The value of $$ f(3) $$ is
    Solution
    $$ f(x)=x^{2}+x g^{\prime}(1)+g^{\prime \prime}(2) $$ and $$ g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x) $$

    $$\text { Here put } g^{\prime}(1)=a, g^{\prime \prime}(2)=b \quad\quad\quad(1)$$

    $$\text { Then } f(x)=x^{2}+a x+b, f(1)=1+a+b \Rightarrow f^{\prime}(x)=2 x+a$$

    $$\quad f^{\prime \prime}(x)=2 $$

    $$\therefore g(x)=(1+a+b) x^{2}+(2 x+a) x+2=x^{2}(3+a+b)+a x\quad+2$$

    $$\Rightarrow g^{\prime}(x)=2 x(3+a+b)+a \text { and } g^{\prime \prime}(x)=2(3+a+b)$$

    $$\text { Hence, } g^{\prime}(1)=2(3+a+b)+a \quad\quad\quad(2)$$

    $$g^{\prime \prime} (2)=2(3+a+b)\quad\quad\quad(3)$$

    From (1),(2) and (3) we have 

    $$ a=2(3+a+b)+a $$

    $$\text { and } b=2(3+a+b) $$

    $$\Rightarrow 3+a+b=0 \text { and } b+2 a+6=0$$

    Hence, $$ b=0 $$ and $$ a=-3 . $$ So, $$ f(x)=x^{2}-3 x $$ and $$ g(x)=-3 x+2 $$

    $$ f(x)=x^{2}-3 x \Rightarrow f(3)=9-9=0 $$
  • Question 3
    1 / -0
    The next number in the pattern 62, 37, 12 ____ is
    Solution
    Option (b) is correct; here, the given series has a common difference of +25.
    $$\begin{array}{l}\Rightarrow-62+25=-37,-37+25=-12 \\\therefore-12+25=13\end{array}$$
  • Question 4
    1 / -0
    the area of a triangle with vertices $$ (-3, 0),(3,0) $$ and $$ (0, k) $$ is $$ 9 $$ sq units. then the value of $$ k $$ will be 
    Solution
    We know that , area of a triangle with vertices $$ (a_1,y_1),(x_2,y_2) $$ and $$ (x_3,y_3) $$ is given by 
    $$ \Delta  = \frac {1}{2} \left| \begin{matrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{matrix} \right|  $$
    $$ \therefore  \Delta = \frac {1}{2} \left| \begin{matrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{matrix} \right|  $$
    Expanding along $$ R_1 $$
    $$ 9 = \frac {1}{2} [ -3 ( -k) - 0 +1 ( 3k) ] $$
    $$ \Rightarrow 18 = 3k + 3k = 6 k $$
    $$ \therefore K = \frac {18 }{6} = 3 $$
  • Question 5
    1 / -0
    Derivative of $${\log{x}}^{\displaystyle\cos{x}}$$ with respect to $$x$$ is
    Solution
    $$y={ \log { x }  }^{ \cos { x }  }$$
    Taking log on both sides, we get
    $$\log { y } =\log { \left( { \log { x }  }^{ \cos { x }  } \right)  } $$
    $$\log { y } =\cos { x } .\left[ \log { \left( \log { x }  \right)  }  \right] $$
    Differentiate w.r. to $$x$$
    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =\cos { x } \frac { d }{ dx } \left[ \log { \left( \log { x }  \right)  }  \right] +\left[ \log { \left( \log { x }  \right)  }  \right] \frac { d }{ dx } \cos { x } $$

    $$\displaystyle \frac { 1 }{ y } \frac { dy }{ dx } =\cos { x } .\frac { 1 }{ \log { x }  } \frac { d }{ dx } \left( \log { x }  \right) -\left[ \log { \left( \log { x }  \right)  }  \right] \sin { x } $$

    $$\displaystyle \frac { dy }{ dx } =y\left[ \cos { x.\frac { 1 }{ x\log { x }  } - } \left[ \log { \left( \log { x }  \right)  }  \right] \sin { x }  \right] $$

    $$\therefore \displaystyle \frac { dy }{ dx } ={ \log { x }  }^{ \cos { x }  }\left[ \cos { x.\frac { 1 }{ x\log { x }  } - } \left[ \log { \left( \log { x }  \right)  }  \right] \sin { x }  \right] $$

  • Question 6
    1 / -0
    lf $${f}'({x})={g}({x})$$ and $${g}'({x})=-{f}({x})$$ for all $$x$$ and $${f}(2)=4= {g}(2)$$, then $${f}^{2}(24)+{g}^{2}(24)$$ is
    Solution
    $$f(x) = -g'(x)$$     (given)
    By multiply both sides with $$f'(x)$$, we get
    $$f(x)f'(x) = -g'(x)f'(x)$$    ...(1)
    $$\because f'(x) = g(x)$$
    $$\therefore$$ Eqn (1) becomes
    $$f(x)f'(x) = -g(x)g'(x)$$
    Now integrating both sides, we get
    $$f^2(x) + g^2(x) = c$$
    Where, $$c$$ is the constant of integration.
    Now, it is given that $$f(2) = g(2) = 4$$
    $$\therefore c = 32$$
    $$\implies f^2(24) + g^2(24) = 32$$

    Hence, option A is correct.
  • Question 7
    1 / -0
    Assertion(A): Let $${ f }({ x })$$ be twice differentiable function such that $$f^{ '' }(x)=-{ f }({ x })$$ and $$f^{ ' }(x)={ g }({ x })$$. lf $${ h }({ x })=[{ f }({ x })]^{ 2 }+[{ g }({ x })]^{ 2 }$$ and $${ h }(1)=8$$, then $${ h }(2)=8$$

    Reason (R): Derivative of a constant function is zero.
    Solution
    Let $$f(x)=c$$
    $${f}'(x)=0$$ So Reason is True

    Now, $$h(x) = [f(x)]^2 + [g(x)]^2$$
    $${h}'(x)=2f(x){f}'(x)+2g(x){g}'(x)$$
    $$=2f(x)g(x)+2g(x){f}''(x)$$       ...since $$f'(x) = g(x) \Rightarrow f''(x) = g'(x)$$
    $$=2g(x)[f(x) + f''(x)]$$
    $$=2g(x)(f(x)-f(x))$$
    $$\Rightarrow {h}'(x)=0$$
    means $$h(x)=C$$ (a constant function)
    Given $$h(1)=8$$
    $$\Rightarrow h(x)=8$$
    Hence, $$f(2)= 8$$
    So, both A and R are correct and R is the correct explanation of A.
  • Question 8
    1 / -0
    $$f(x)=|x-1|+|x-3|$$ then $$f^{'}(2)=$$
    Solution
    $$f(x) = |x-1|+|x-3| =\begin{cases} -(x-1)-(x-3), x\le 1\\(x-1)-(x-3), 1< x\le 3\\x-1+(x-3), x>3\end{cases}$$
    $$\Rightarrow f(x) =\begin{cases} 4-2x, x\le 1\\2, 1< x\le 3\\2x-4, x>3\end{cases}$$
    $$\therefore f'(x) =\begin{cases} -2, x\le 1\\0, 1< x\le 3\\2, x>3\end{cases}$$
    Hence $$f'(2) =0$$
  • Question 9
    1 / -0
    Assertion (A): lf $$f(x)=\cos^{2}x+\cos^{2}\left(x+\dfrac{\pi}3\right)- \cos x \cos \left(x+\dfrac{\pi}3\right)$$ then $$f'(x)=0$$

    Reason(R): Derivative of constant function is zero
    Solution
    $$f(x)=\cos ^{2}x+\cos ^{2}(x+\cfrac{\pi }{3})-2\cos   x  \cos (x+\cfrac{\pi }{3})+\cos   x  \cos (x+\cfrac{\pi }{3})$$
         $$=(\cos  x - \cos (x+\cfrac{\pi }{3}))^{2} + \cos  x \cos (x+\cfrac{\pi }{3}) $$
         $$=(\cos  x - (\cfrac{1}{2}\cos  x - \cfrac{\sqrt{3}}{2} \sin  x ))^{2} + \cos  x \cos  (x+\cfrac{\pi }{3})$$
         $$=(\cfrac{\cos  x }{2} + \cfrac{\sqrt{3}}{2} \sin  x )^{2} + \cos  x \cos  (x+\cfrac{\pi }{3})$$
         $$=\cfrac{\cos^2x}4 + \cfrac{3\sin^2x}4 +\cfrac{\sqrt3}2 \sin x\cos x + \cos x\left(\cfrac{\cos x}2 - \cfrac{\sqrt3}2\sin x\right)$$
    $$f(x)=\cfrac{3}{4}$$
    $$f{}'(x)=0$$  
  • Question 10
    1 / -0

    Given that $$f (x)$$
    is a differentiable function of $$ x$$ and that $$f(x)$$ . $$f (y)$$ =  $$f (x) $$+ $$f (y)$$ + $$f (xy) -2$$ and that
    $$f (2) =5$$.

    Then $$f (3)$$ is equal to?

    Solution
    Given, $$f\left( x \right) .f\left( y \right) =f\left( x \right) +f\left( y \right) +f\left( xy \right) -2\quad -(1)$$
    $$f\left( 2 \right) =5$$
    $$f\left( x \right) ={ x }^{ 2 }+1$$
    Equation $$1 \Rightarrow $$ $$\left( { x }^{ 2 }+1 \right) \left( { y }^{ 2 }+1 \right) ={ x }^{ 2 }+1+{ y }^{ 2 }+1+{ x }^{ 2 }{ y }^{ 2 }+1-2$$
    $${ x }^{ 2 }{ y }^{ 2 }+{ x }^{ 2 }+{ y }^{ 2 }+1={ x }^{ 2 }+{ y }^{ 2 }+{ x }^{ 2 }{ y }^{ 2 }+1$$
    $$\therefore f\left( 3 \right) ={ x }^{ 2 }+1={ 3 }^{ 2 }+1=10$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now