Self Studies

Differentiation...

TIME LEFT -
  • Question 1
    1 / -0

    The area of the triangle formed by the straight line $$x+y=3$$ and the bisectors of the pair of straight lines $${ x }^{ 2 }-{ y }^{ 2 }+2y=1$$ is 

  • Question 2
    1 / -0

    If the area of triangle formed by the points $$(2a, b) (a + b, 2b + a)$$ and $$(2b, 2a)$$ be $$\lambda$$, then the area of the triangle whose vertices are $$(a + b, a - b), (3b - a, b + 3a)$$ and $$(3a - b, 3b - a)$$ will be

  • Question 3
    1 / -0

    If the area of triangle formed by the points (2a , b) (a + b , 2b + a) and (2b , 2a) be $$\lambda$$ , then the area of the triangle whose vertices are (a + b , a b) , (3b a , b + 3a) and (3a b , 3b a) will be

  • Question 4
    1 / -0

    The area of the triangle formed by the lines $$x=0;y=0$$ and $$x\sin { { 18 }^{ 0 } } +y\cos { { 36 }^{ 0 } } +1=0$$ is 

  • Question 5
    1 / -0

    The value of $$\int _{ 0 }^{ \left[ x \right]  }{ \left( x-\left[ x \right]  \right) dx\quad is\left( \left[ . \right] denotes\quad greatest\quad integer\quad function \right)  } $$

  • Question 6
    1 / -0

    $${\log _5}2,\,\,{\log _6}\,2,\,\,{\log _{12}}\,\,2\,\,$$ are in 

  • Question 7
    1 / -0

    If $$f\left( x \right) = {\left| x \right|^{\left| {\sin x} \right|}}$$, then $${f'}\left( { - \dfrac{\pi }{4}} \right)$$ is equals

  • Question 8
    1 / -0

    In $$\triangle ABC,A(1,2);B(5,5),\angle ACB={ 90 }^{ 0 }$$. If area of $$\triangle ABC$$ is to be 6.5 sq. units, then the possible number of points for C is 

  • Question 9
    1 / -0

    A line forms a triangle of area $$54\sqrt { 3 } $$ sq-units with the coordinate axes. Then the equation of the line if the perpendicular drawn from the origin to the line makes an angle of $${ 60 }^{ \circ  }$$ with the x-axis is 

  • Question 10
    1 / -0

    Area of the triangle formed by co-ordinate axes and the line x + y = 5 is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now