Self Studies
Selfstudy
Selfstudy

Circles Test 18

Result Self Studies

Circles Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of circle with centre $$(1,2)$$ and tangent $$x+y-5=0$$ is
    Solution

  • Question 2
    1 / -0
    The circle $${x^2} + {y^2} - 3x - 4y + 2 = 0$$ cuts $$x$$-axis
    Solution
    $$x^{2}+y^{2}-3x-4y+2=0$$ 

    x-axis will be cut when $$y=0 $$

    put $$y=0  $$

    $$x^{2}-3x+2=0$$ 

    $$(x-2)(x-1)=0$$

    $$x=1,2 $$

    points $$(1,0),(2,0)$$
    D is correct.
  • Question 3
    1 / -0
    Equation of the circle which passes through the centre of the circle $$x^{2} + y^{2} + 8x + 10y - 7 = 0$$ and is concentric with the circle $$2x^{2} + 2y^{2} - 8x - 12y - 9 = 10$$ is
    Solution
    First equation $$=x^2+y^2+8x+10y-7=0$$

    its centre $$=(-4, -5)$$

    Second equation of the circle

    $$=2x^2+2y^2+8x-12y-9=0$$

    its, centre $$=(2, 3)$$

    radius:$$=r^2\sqrt {(2+4)^2+(3+5)^2}$$

    $$r^2=\sqrt {6^2+8^2}=\sqrt {36+64}$$

    $$r^2 =100$$

    $$r=10$$

    The equation of the concentric 

    circle $$=(x-2)^2+(y-3)^2=10^2$$

    $$x^2-4x+4+y^2-6y+9-100=0$$

    $$x^2-4x+y^2-6y+13-100=0$$

    $$x^2+y^2-4x-6y-87=0$$
  • Question 4
    1 / -0
    Equation of the circle of radius 5 whose centre lies on y-axis in first quadrant and passes through$$\left( {3,\,\,\,\,2} \right)$$ is 
    Solution
    Let the coordinate of the center be $$(0,k)$$ as center lies on y-axis

    hence, the Equation of circle should be 
    $$(x-0)^2+(y-k)^2=5^2\Rightarrow x^2+y^2+k^2-2ky=25$$

    and it passes through the point (3,2)
    $$3^2+2^2+k^2-2k\cdot 2=25\Rightarrow k^2-4k-12=0\Rightarrow k=-2,6$$

    But $$k=6$$ as the center is in the first quadrant

    Putting this value in $$x^2+y^2+k^2-2ky=25$$, we get

    $$x^2+y^2+36-12y=25\Rightarrow x^2+y^2-12y+11=0$$
  • Question 5
    1 / -0
    The axes are translated so that the new equation of the circle $$x^{2}+y^{2}-5x+2y-5=0$$ has no first degree terms. Then the new equation is
    Solution
    $$x^2+y^2-5x+2y-5=0$$
    $$\sqrt {\dfrac {25}{4}+1+25}$$
    $$=\sqrt {\dfrac {49}{4}}$$
    $$ (5/2, -1)$$
    $$x^2+y^2=\left (\sqrt {\dfrac {49}{4}}\right)^2$$
    $$x^2+y^2=\dfrac {49}{4}$$
  • Question 6
    1 / -0
    A circle is concentric with circle $$x^{2}+ y^{2}-2x+4y-20=0$$. If perimeter of the semicircle is $$36$$ then the equation of the circle is :
    Solution
    $$x^2+y^2-2x+4y-20=0$$
    center $$(1, -2)$$
    perimeter $$\Rightarrow 36=(\pi r+2r)$$
                      $$36=r(3.14+2)=$$
    $$((x-1)+y+2)^2=\left(\dfrac{126}{11}\right)^2$$ or $$(7)^2$$   $$r=\dfrac{36}{5.14}=7$$
  • Question 7
    1 / -0
    The name of the conic represent by the equation $$x^2+y^2-2y+20x+10=0$$ is
    Solution
    For a standard second degree equation $$ax^2+2hxy+by^2+2gx+2fy+c=0$$
    to be a circle $$a=b\\h=0$$
    Here $$a=b=1\\h=0$$
    So The given equation is Circle
  • Question 8
    1 / -0
    The equation of the circle passing through the foci of the ellipes  $${\frac{x}{{16}}^2} + {\frac{y}{{{9^{}}}}^2} = 1$$ and having centre at $$\left( {0,3} \right)$$ is 

    Solution
    R.E.F image 
    Equation of ellipse : $$ \frac{x^{2}}{16}+\frac{y^{2}}{9} = 1 $$
    coordinate of foci are $$ (ac,o); (-ac,o) $$
    $$ e = \sqrt{1-\frac{9}{16}} = \frac{\sqrt{7}}{4} $$
    $$ a = 4 $$
    co-ordinate of foci $$ = (\sqrt{7},0),(-\sqrt{7},0) $$
    $$ R = \sqrt{7+9} = 4 $$
    $$ (x-0)^{2}+(y-3)^{2} = 4^{2} $$
    $$ x^{2}+y^{2}-6y+9 = 16 $$
    $$ x^{2}+y^{2}-6y-7 = 0 $$ 

  • Question 9
    1 / -0
    A variable circle is drawn to touch the x-axis at the origin.The locus of the pole at the straight line $$6 x + m y + n = 0$$ w.r.t. the variable circle has the equation:-
    Solution

  • Question 10
    1 / -0
    Equation of circles which touch both the axes and whose centres are at a distance of $$2\sqrt {2}$$ units from origin are 
    Solution
    Since $$h=k$$ (radius )
    $$\sqrt{h^{2}+k^{2}}=2\sqrt{2}$$
    $$h^{2}+k^{2}=8$$
    $$2h^{2}=8$$     (Taking circle $$1^{st}$$ Quad)
    $$h=2$$ 
    $$\therefore k=2$$ in 
    $$\therefore$$ center $$=(2,2)$$
    Eqn. of circle having centre 
    $$(h,k)$$ & radius $$=r$$
    $$(x-h)^{2}+(y-k)^{2}=r^{2}$$
    $$\therefore (x-2)^{2}+ (y-2)^{2}=4$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now