Self Studies
Selfstudy
Selfstudy

Circles Test 21

Result Self Studies

Circles Test 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the circle of a radius $$5$$ in the first quadrant which touches the x-axis and the line $$3x-4y=0$$ is 
    Solution

    Hence, Option (D) is the correct answer.

  • Question 2
    1 / -0
    Equation of circle touching $$x=0, y=0$$ and $$x=4$$ is 
    Solution
    $$\textbf{Step -1: Finding the centre and radius from the given values.}$$
                     $$\text{We are given that}$$ $$(h,k)=(2,2),r=2$$
    $$\textbf{Step -2: Finding the equation of the circle}$$
                     $$\text{Equation of a circle whose centre is}$$ $$(h,k)$$ $$\text{and radius is}$$ $$r$$ $$\text{is}$$
                     $$\Rightarrow (x-h)^2+(y-k)^2=r^2$$
                     $$\Rightarrow (x-2)^2+(y-2)^2=2^2$$
                     $$\Rightarrow x^2-4x+4+y^2+4y+4=4$$
                     $$\Rightarrow x^2+y^2-4x-4y=-4$$
                     $$\text{Multiplying throughout by}$$ $$4,$$
                     $$\Rightarrow 4(x^2+y^2)-16x-16y+16=0$$ 
    $$\textbf{ Hence, correct option is A.}$$
  • Question 3
    1 / -0
    The circle  $$x ^ { 2 } + y ^ { 2 } = 4 x + 8 y + 5$$  intersects the line  $$3 x - 4 y = m$$  at two distinct points if :-
    Solution
    circle $$x^{2}+y^{2}-4x-8y-5=0$$

    standard circle : $$ ax^{2}+2nxy+by^{2}+2gx+2fy+c=0$$
    on comparing -

    center $$(2,4)$$

    Radius$$=\sqrt{4+16+5}=\sqrt{25}=5$$

    If the circle is interacting line $$3x-4y=m$$ at distinct
    points:

    $$\Rightarrow $$  Length of perpendicular from center to 
    line $$ <$$  radius 

    $$\Rightarrow \left | \dfrac{6-16-m}{5} \right |<25$$

    $$\Rightarrow \left | 10+m \right |< 25$$

    $$\Rightarrow -25< m+10< 25$$

    $$\Rightarrow -35< m< 15$$ 
  • Question 4
    1 / -0
    Find the equation of a circle whose center is (2,-1) and radius is 3 
    Solution
    Equation of circle with center $$(h,k)$$ and radius $$r$$ is written as
    $$(x-h)^2+(y-k)^2=r^2$$

    then,
    Equation of circle with center $$(2,-1)$$ and radius $$3$$ is written as
    $$\Rightarrow (x-2)^2+(y+1)^2=3^2$$
    $$\Rightarrow x^2+4-4x+y^2+1+2y=9$$
    $$\therefore x^2+y^2-4x+2y-4=0$$

  • Question 5
    1 / -0
    The equation of the circle passing through $$(4, 1)$$ and $$(6, 5)$$ and having center of the line 
    Solution
    Let the equation of the required circle be $$(x-h)^2+(y-k)^2=r^2$$ …………$$(1)$$
    It is given that the circle passes through $$(4, 1)$$ and $$(6, 5)$$
    $$\therefore (4-h)^2+(1-k)^2=r^2$$ and $$(6-h)^2+(5-k)^2=r^2$$
    $$\Rightarrow (4-h)^2+(1-k)^2=(6-h)^2+(5-k)^2$$
    on expanding we get,
    $$16-8h+h^2+1-2k+k^2=36-12h+h^2+25-10k+k^2$$
    $$16-8h+1-2k=36-12h+25-10k$$
    $$4h+8k=44$$.
    Dividing throughout by $$4$$, we get,
    $$h+2k=1$$ ……….$$(2)$$
    It is given that the centre of the circle lies on the line $$4x+y=16$$
    $$\therefore 4h+k=16$$ ………….$$(3)$$
    Solving $$(2)$$ & $$(3)$$
    $$4h+k=16$$
    $$4h+8k=44$$
    _____________
        $$-7k=-25$$
            $$k=4$$
    _____________
    Substitute for k in equation $$(1)$$
    $$h+2(4)=11$$
    $$h=3$$
    $$\therefore h=3$$ & $$k=4$$ putting in equation $$(1)$$
    $$(4-3)^2+(1-4)^2=r^2$$
    $$r=\sqrt{10}$$
    Hence, $$(x-3)^2+(y-4)^2=(\sqrt{10})^2$$
    $$\therefore x^2+y^2-6x-8y+15=0$$.

  • Question 6
    1 / -0
    The equation of the tangent to the curve y = 2sinx + sin2x at $$x=\frac { \pi  }{ 3 } $$ on it is 
    Solution
    $${ (x-2) }^{ 2 }+{ (y-3) }^{ 2 }=0\\ \Rightarrow { x }^{ 2 }+4-4x+{ y }^{ 2 }+9-6y=0\\ { x }^{ 2 }+{ y }^{ 2 }-4x+6y+13=0$$
    radius$$=\sqrt { { g }^{ 2 }+{ f }^{ 2 }-c } $$
    $$g=-2 \quad f=-3 \quad c=13$$
    $$r=\sqrt { { (-2) }^{ 2 }+{ (-3) }^{ 2 }-13 } =\sqrt { 13-13 } =0$$
    radius of the circle is zero .
    Hence diameter$$=0$$
    i.e., it is a point circle with centre at $$(2,3)$$.
  • Question 7
    1 / -0
    $${ \cos }^{ 4 }\dfrac { \pi  }{ 8 } +{ \cos }^{ 4 }\dfrac { 3\pi  }{ 8 } +{ \cos }^{ 4 }\dfrac { 5\pi  }{ 8 } +{ \cos }^{ 4 }\dfrac { 7\pi  }{ 8 } =$$
    Solution
    $$\textbf{Step 1: Simplify the given expression.}$$

                    $$\text{Consider, } \cos^4\dfrac{\pi}{8} + \cos^4\dfrac{3\pi}{8} + \cos^4\dfrac{5\pi}{8} + \cos^4\dfrac{7\pi}{8}$$

                    $$= \cos^4\dfrac{\pi}{8} + \cos^4\left(\dfrac{\pi}{2}-\dfrac{\pi}{8}\right) + \cos^4 \left ( \dfrac{\pi}{2} + \dfrac{\pi}{8} \right ) + \cos^4 \left ( \pi - \dfrac{\pi}{8} \right )$$

                    $$= \cos^4\dfrac{\pi}{8} + \sin^4\dfrac{\pi}{8} + \left (-\sin\dfrac{\pi}{8} \right )^4 + \left ( -cos\dfrac{\pi}{8} \right )^4$$

                    $$= 2\left [ \cos^4\dfrac{\pi}{8} + \sin^4\dfrac{\pi}{8} \right]$$

    $$\textbf{Step 2: Use multiple angle formula to get final result. }$$

                   $$= 2 \left \{ \left ( \cos^2\dfrac{\pi}{8} + \sin^2\dfrac{\pi}{8} \right )^2 - 2\cos^2\dfrac{\pi}{8} \cdot \sin^2\dfrac{\pi}{8} \right \}$$

                   $$= 2 \left ( 1^2 - \dfrac{1}{2} \left ( 2\sin\dfrac{\pi}{8}\cos\dfrac{\pi}{8} \right )^2 \right )$$               
                  
                   $$= 2\left [ 1^2 - \dfrac{1}{2} \times \left ( \sin\dfrac{\pi}{4} \right )^2 \right ]$$                                      $$[\because \boldsymbol{\sin 2A=2\sin A\cos A}]$$

                   $$= 2\left ( 1^2 - \dfrac{1}{2} \times \left ( \dfrac{1}{\sqrt 2} \right )^2 \right )$$

                   $$= 2\left [1^2 - \dfrac{1}{4} \right ]=\dfrac{3}{2}$$

    $$\textbf{Hence, Option 'B' is correct.}$$
  • Question 8
    1 / -0
    The line $$y=mx+c$$ cut the circle $${x}^{2}+{y}^{2}={a}^{2}$$ in the distinct point $$A$$ and $$B$$. Equation of the circle having minimum radius that an be drawn through the points $$A$$ and $$B$$ is
    Solution

  • Question 9
    1 / -0
    Three sides of a triangle have the equations $$L_{r} = y - m_r x - C_{r} = 0; r = 1, 2, 3$$. Then $$\lambda L_{2}L_{3} + \mu L_{3}L_{1} + \gamma L_{1}L_{2} = 0$$. where $$\lambda \neq 0, \mu \neq 0, \gamma \neq 0$$, is the equation of circumcircle of triangle if
    Solution

  • Question 10
    1 / -0
    The equation $$14x^{2}-4xy+11y^{2}-44x-58y+71=0$$ represents
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now