Self Studies
Selfstudy
Selfstudy

Circles Test 25

Result Self Studies

Circles Test 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The centre of a circle whose end points of a diameter are $$(-6,3)$$ and $$(6,4)$$ is
    Solution

    $${\textbf{Step 1: Compare the coordinates of given points with the end points of line.}}$$

                    $${\text{Given end point of diameter are}}$$$$\left( { - 6,3} \right)$$$${\text{and}}$$$$\left( {6,4} \right)$$

                    $${\text{Comparing with}}$$ $$\left( {{x_1},{y_1}} \right){\text{ and }}\left( {{x_2},{y_2}} \right)$$

                    $${\text{Here,}}$$$${x_1} =  - 6,{y_1} = 3,{x_2} = 6,{y_2} = 3$$

    $${\textbf{Step 2: Put these values in eqn of mid-point of a line.}}$$

                    $${\text{Now, Centre of a circle is mid - point of the diameter}}{\text{.}}$$

                    $${\text{Mid-point of a line is given by=}}$$ $$\left( {\frac{{{x_1} + {x_2}}}{2}} \right),\left( {\frac{{{y_1} + {y_2}}}{2}} \right)$$

                    $${\text{Therefore, centre of circle is   =}}$$$$\left( {\frac{{ - 6 + 6}}{2}} \right),\left( {\frac{{3 + 4}}{2}} \right)$$

                                                                          $$ = \left( {0,\frac{7}{2}} \right)$$

    $${\textbf{Final Answer: Hence, the required answer is}}$$ $$\mathbf{\left( {0,\frac{7}{2}} \right).}$$

  • Question 2
    1 / -0
    Find the equation of the circle that passes through the points $$(0,6),(0,0)$$ and $$(8,0)$$
    Solution

    Let the equation of the general form of the required circle be 

    $$x^2+y^2+2gx+2fy+c=0$$................(1)

    According to the problem, the above equation of the circle passes through the points $$(0, 6), (0, 0)$$ and $$(8, 0)$$. Therefore,

    $$36 + 12f + c = 0$$  ………. (2)

    $$ c = 0$$                       ……………. (3)

    $$64 + 16g + c = 0$$  ……………. (4)

    Putting $$c = 0$$ in (2), we obtain $$f = -3$$. Similarly put $$c = 0$$ in (4), we obtain $$g=-4$$

    Substituting the values of $$g, f$$ and $$c$$ in (1), we obtain the equation of the required circle as:

    $$x^2+y^2+2(-4)x+2(-2)y+0=0$$ that is 

    $$x^2+y^2-8x-4y+0=0$$ can be rewritten as

    $$x^2+y^2-8x-4y+16+9=0+16+9$$

    $$(x-4)^2+(y-3)^2=25$$

    Therefore, the equation of circle is $$(x-4)^2+(y-3)^2=25$$.


  • Question 3
    1 / -0
    $$f(\displaystyle \mathrm{m}_{\mathrm{i}}, \frac{1}{\mathrm{m}_{\mathrm{i}}})$$ , $$\mathrm{i}=1,2,3,4$$ are four distinct points on the circle with centre origin, then value of $$\mathrm{m}_{1}\mathrm{m}_{2}\mathrm{m}_{3}\mathrm{m}_{4}$$ is equal to
    Solution

    Equation of circle having centre of origin $$(0,0)$$ and radius $$=r$$,

    $$S_{1};x^{2}+y^{2}=r^{2}----(1)$$

    $$\therefore f(m_{1},\dfrac{1}{m_{2}}),f(m_{2},\dfrac{1}{m_{2}}),--f(m_{4},\dfrac{1}{m_{4}})$$
    These points lie on $$S_{1}$$.

    Let $$\displaystyle f(m, \frac{1}{m})$$ is point lie on S_{1},

    $$m^{2}+\dfrac{1}{m^{2}}=r^{2}$$

    $$m^{4}+1-r^{2}m^{2}=0$$

    $$m^{4}-1-r^{2}m^{2}+1=0$$

    $$m_{1},m_{2},m_{3}$$ and $$m_{4}$$ are roots of this equation

    So, $$m_{1}m_{2}m_{3}m_{4} =1$$

  • Question 4
    1 / -0
    A Iight ray gets reflected

    from the $$x = -2$$. If the reflected touches the circle $$x^2 + y^2 = 4$$ and point of incident is $$(-2,-4)$$, then equation of incident ray is 
  • Question 5
    1 / -0
    Find the equation of the circle with center at $$(-3,5)$$ and passes through the point $$(5,-1)$$
    Solution
    Here we know that $$(h,k)=(-3,5)$$ but we are not given the radius. 
    However, we can find the radius by using the distance formula. 
    Therefore,
    $$r = \sqrt {(x_2 – x_1)^2 + (y_2 – y_1)^2}$$
    $$r = \sqrt {(5-(-3) )^2 + (-1-5)^2}$$
    $$r = \sqrt {(8 )^2 + (6)^2}$$
    $$r = \sqrt {64+36}$$
    $$r = \sqrt {100}$$
    $$r=10$$

    An equation of the circle with center $$(h,k)$$ and radius $$r$$ is 
    $$(x-h)^{ 2 }+(y-k)^{ 2 }=r^{ 2 }$$

    Substitute the values in the equation of circle as follows:
    $$(x-(-3))^{ 2 }+(y-5)^{ 2 }=10^{ 2 }$$
    i.e., $$(x+3)^{ 2 }+(y-5)^{ 2 }=100$$

    Therefore, the equation of the circle is $$(x+3)^{ 2 }+(y-5)^{ 2 }=100$$.
  • Question 6
    1 / -0
    Let P point on the circle $$x^2 + y^2 = 9$$, Q a point on the line $$7x + y + 3 = 0$$, and the perpendicular bisector of PQ be the line $$x - y + 1 = 0$$. Then the coordinate of P are
    Solution
    Any point on the lines $$7x + y + 3 = 0$$ is $$Q (t, -3 -7 t),       t  \in R.$$
    Now P $$(h, k)$$ is image of point Q in the line $$x - y +1 = 0$$
    Then, $$\displaystyle \frac{h - t}{1} = \frac{k - (-3 - 7 t)}{-1}$$
             $$ = \displaystyle - \frac{2 (t - (-3 - 7t) + 1)}{1+1}$$
             $$ = -8t - 4$$
    $$\Rightarrow       (h, k) \equiv (-7t - 4, t + 1)$$
    This point lies on the circle $$x^2 + y^2 = 9$$
    $$\Rightarrow (-7t - 4)^2 + (t + 1)^2 = 9$$
    $$\Rightarrow 50 r^2 + 58t + 8 = 0$$
    $$\Rightarrow 25r^2 + 19t + 4 = 0$$
    $$ \Rightarrow (25 t + 4) (t + 1) = 0$$
    $$\Rightarrow t = -4/25, t = 1$$
    $$\Rightarrow (h, k) = \displaystyle \left ( -\frac{72}{25}, \frac{21}{25} \right ) $$ or $$(3, 0)$$
  • Question 7
    1 / -0
    If the line $$3x+4y=24$$ and $$4x+3y=24$$ intersects the coordinates axes at $$A,B,C$$ and $$D$$, then the equation of the circle passing through these $$4$$ points  is
    Solution
    writing in intercept form, we get 
    $$\dfrac{x}{8}+\dfrac{y}{6}=1$$ and 

    $$\dfrac{x}{6}+\dfrac{y}{8}=1$$
    Hence the point are $$(0,8),(0,6)$$ and $$(6,0)(8,0)$$
    Hence
    The circle cuts the x axis at $$(6,0)(8,0)$$
    Hence x-coordinate of the center will be 
    $$=6+\dfrac{8-6}{2}$$
    $$=7$$
    The circle cuts the x axis at $$(0,6)(0,8)$$
    Hence y-coordinate of the center will be 
    $$=6+\dfrac{8-6}{2}$$
    $$=7$$
    The center of the circle will lie at 
    $$(7,7)=C$$
    Now let the point $$(6,0)$$ be A.
    Hence 
    R=radius
    $$CA$$$$=\sqrt{50}$$
    Hence, the equation of the circle will be 
    $$(x-7)^{2}+(y-7)^{2}=50$$
    $$x^{2}+y^{2}-14x-14y+98=50$$
    Or 
    $$x^{2}+y^{2}-14x-14y+48=0$$
  • Question 8
    1 / -0
    Equation of a circle passing through the point $$(1,2)$$ and $$(3,4)$$ and touching the line $$2x+y-3=0$$ is
    Solution

  • Question 9
    1 / -0
    A circle touches the y-axis at $$(0, 2)$$ and has an intercept of $$4$$ units on the positive side of the x-axis. Then the equation of the circle is?
    Solution

    Let $$s: x^2 + y^2 + 2gx + 2fy +c = 0$$ be the equation of the circle

    $$S(0,2) = 0$$

    $$\implies 4 + 4f + c =0 -eq.1$$

    Intercept on x-axis is given by

    $$2\sqrt{g^2 - c} = 4$$

    $$g^2 – c = 4 -eq.2$$

    Since x = 0 is a tangent

    Radius = perpendicular distance from the center to tangent

    $$\sqrt {g^2 + f^2 - c} = \dfrac{|-g|}{\sqrt{1 + 0}$$

    $$ g^2 + f^2 - c  = g^2 $$

    $$f^2 = c$$

    Substituting in eq.1

    $$4 + 4f + f^2 =0 \implies (f+2)^2 = 0 \implies f = -2 $$

    $$\implies c = 4$$

    From eq.2

    $$g^2 – 4 = 4$$

    $$g = \pm 2 \sqrt{2}$$

    Equation of circle is

    $$x^2 +y^2 \pm 4\sqrt 2 x – 4y + 4 = 0$$

    $$\implies x^2 +y^2 – 4(\sqrt 2 x + y) + 4 = 0$$ 

  • Question 10
    1 / -0
    O is the centre of a circle of diameter $$4$$cm and OABC is a square, if the shaded area is $$\displaystyle\frac{1}{3}$$ area of the square, then the side of the square is __________.

    Solution
    $$O$$ is the center of the circle and the diameter is $$4$$ units.
    Also area of the shaded region$$=\cfrac { 1 }{ 3 } $$ area of the square
    Area of the shaded region $$=\pi { r }^{ 2 }\times \cfrac { 90 }{ 360 } \\ =\pi \left( 4 \right) \left( \cfrac { 1 }{ 4 }  \right) \\ =\pi $$
    Area of the square $$={ a }^{ 2 }=\pi \times 3=3\pi $$
    $$\therefore a=\sqrt { 3\pi  } $$cm

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now