Let $${ l }_{ 1 }x+{ m }_{ 1 }y+{ n }_{ 1 }=0$$ & $${ l }_{ 2 }x+{ m }_{ 2 }y+{ n }_{ 2 }=\theta $$ be two lines represented by $${ ax }^{ 2 }+2hxy+{ by }^{ 2 }+2gx+2fy+c=0$$
$${ l }_{ 1 }{ l }_{ 2 }=a;\left( { l }_{ 1 }{ m }_{ 2 }+{ l }_{ 2 }{ n }_{ 1 } \right) =2h$$ , $${ m }_{ 1 }{ m }_{ 2 }=b,\left( { l }_{ 1 }{ n }_{ 2 }+{ l }_{ 2 }{ n }_{ 1 } \right) =2g,\left( { m }_{ 1 }{ n }_{ 2 }+{ m }_{ 2 }{ n }_{ 1 } \right) =2f$$
$${ n }_{ 1 }{ n }_{ 2 }=c$$
Perpendicular from origin to $${ l }_{ 1 }x+{ m }_{ 1 }y+{ n }_{ 1 }=0$$
$$=\dfrac { { n }_{ 1 } }{ \sqrt { { l }_{ 1 }^{ 2 }+{ m }_{ 1 }^{ 2 } } } $$
Perpendicular from origin to $${ l }_{ 2 }x+{ m }_{ 2 }y+{ n }_{ 2 }=0$$
$$=\dfrac { { n }_{ 2 } }{ \sqrt { { l }_{ 2 }^{ 2 }+{ m }_{ 2 }^{ 2 } } } $$
Product, $$\dfrac { { n }_{ 1 }{ n }_{ 2 } }{ \sqrt { \left( { l }_{ 1 }^{ 2 }+{ m }_{ 1 }^{ 2 } \right) \left( { l }_{ 2 }^{ 2 }+{ m }_{ 2 }^{ 2 } \right) } } $$
$$=\dfrac { C }{ \sqrt { { \left( { l }_{ 1 }{ l }_{ 2 } \right) }^{ 2 }+\left( { l }_{ 1 }^{ 2 }{ m }_{ 2 }^{ 2 }+{ l }_{ 2 }^{ 2 }{ m }_{ 1 }^{ 2 } \right) +{ \left( { m }_{ 1 }{ m }_{ 2 } \right) }^{ 2 } } } $$
$$=\dfrac { C }{ \sqrt { { \left( { l }_{ 1 }{ l }_{ 2 } \right) }^{ 2 }+{ \left( { l }_{ 1 }{ m }_{ 2 }+{ l }_{ 2 }{ m }_{ 1 } \right) }^{ 2 }{ -2{ l }_{ 1 }{ l }_{ 2 }{ m }_{ 1 }{ m }_{ 2 }+\left( { m }_{ 1 }{ m }_{ 2 } \right) }^{ 2 } } } $$
$$=\dfrac { C }{ \sqrt { { a }^{ 2 }+{ 4h }^{ 2 }-2ab+{ b }^{ 2 } } } $$
$$=\dfrac { C }{ \sqrt { { \left( a-b \right) }^{ 2 }+{ 4h }^{ 2 } } } $$