Self Studies
Selfstudy
Selfstudy

Circles Test 28

Result Self Studies

Circles Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Equation of the circle whose radius is 3 and centre is $$(-1,2)$$
    Solution

  • Question 2
    1 / -0
    The equation of circle at center $$(3,4)$$ and radius $$5$$.
    Solution
    The center of equation $$(3,4)$$
    The radius of circle is $$5$$
    The equation of circle is 
    $$(x-3)^2+(y-4)^2=5^2\\x^2+y^2-6x+9-8y+16=25\\x^2+y^2-6x-8y=0$$
  • Question 3
    1 / -0
    The product of perpendicular drawn from the origin to the lines represented by the equation $$ax^{2}+2hxy+by^{2}+2gx+2fy+c=0$$, will be:
    Solution
    Let $${ l }_{ 1 }x+{ m }_{ 1 }y+{ n }_{ 1 }=0$$  &  $${ l }_{ 2 }x+{ m }_{ 2 }y+{ n }_{ 2 }=\theta $$ be two lines represented by $${ ax }^{ 2 }+2hxy+{ by }^{ 2 }+2gx+2fy+c=0$$
    $${ l }_{ 1 }{ l }_{ 2 }=a;\left( { l }_{ 1 }{ m }_{ 2 }+{ l }_{ 2 }{ n }_{ 1 } \right) =2h$$ ,  $${ m }_{ 1 }{ m }_{ 2 }=b,\left( { l }_{ 1 }{ n }_{ 2 }+{ l }_{ 2 }{ n }_{ 1 } \right) =2g,\left( { m }_{ 1 }{ n }_{ 2 }+{ m }_{ 2 }{ n }_{ 1 } \right) =2f$$
    $${ n }_{ 1 }{ n }_{ 2 }=c$$
    Perpendicular from origin to $${ l }_{ 1 }x+{ m }_{ 1 }y+{ n }_{ 1 }=0$$
    $$=\dfrac { { n }_{ 1 } }{ \sqrt { { l }_{ 1 }^{ 2 }+{ m }_{ 1 }^{ 2 } }  } $$
    Perpendicular from origin to $${ l }_{ 2 }x+{ m }_{ 2 }y+{ n }_{ 2 }=0$$
    $$=\dfrac { { n }_{ 2 } }{ \sqrt { { l }_{ 2 }^{ 2 }+{ m }_{ 2 }^{ 2 } }  } $$
    Product, $$\dfrac { { n }_{ 1 }{ n }_{ 2 } }{ \sqrt { \left( { l }_{ 1 }^{ 2 }+{ m }_{ 1 }^{ 2 } \right) \left( { l }_{ 2 }^{ 2 }+{ m }_{ 2 }^{ 2 } \right)  }  } $$
    $$=\dfrac { C }{ \sqrt { { \left( { l }_{ 1 }{ l }_{ 2 } \right)  }^{ 2 }+\left( { l }_{ 1 }^{ 2 }{ m }_{ 2 }^{ 2 }+{ l }_{ 2 }^{ 2 }{ m }_{ 1 }^{ 2 } \right) +{ \left( { m }_{ 1 }{ m }_{ 2 } \right)  }^{ 2 } }  } $$
    $$=\dfrac { C }{ \sqrt { { \left( { l }_{ 1 }{ l }_{ 2 } \right)  }^{ 2 }+{ \left( { l }_{ 1 }{ m }_{ 2 }+{ l }_{ 2 }{ m }_{ 1 } \right)  }^{ 2 }{ -2{ l }_{ 1 }{ l }_{ 2 }{ m }_{ 1 }{ m }_{ 2 }+\left( { m }_{ 1 }{ m }_{ 2 } \right)  }^{ 2 } }  } $$
    $$=\dfrac { C }{ \sqrt { { a }^{ 2 }+{ 4h }^{ 2 }-2ab+{ b }^{ 2 } }  } $$
    $$=\dfrac { C }{ \sqrt { { \left( a-b \right)  }^{ 2 }+{ 4h }^{ 2 } }  } $$
  • Question 4
    1 / -0
    The equation of the image of the circle $${ \left( x-3 \right)  }^{ 2 }\quad +\quad { \left( y-2 \right)  }^{ 2 }\quad =1\quad in\quad the\quad mirror\quad x+y=19\quad is$$
    Solution

  • Question 5
    1 / -0
    If the equation $$p{ x }^{ 2 }+(2-q)xy+3{ y }^{ 2 }-6qx+30y+6q=0$$ represents a circle, then the values of p and q are
    Solution

  • Question 6
    1 / -0
    Equation of the circle whose radius is $$a+b$$ and centre $$(a, -b)$$
    Solution

  • Question 7
    1 / -0
    If  $$y ^ { 2 } - 2 x - 2 y + 5 = 0$$  is
  • Question 8
    1 / -0
    A circle passes through $$A(1,2)$$ and the equations of the normal to the circle is $$x+2y=5$$. If the circle passes through $$B(-5,5)$$, then the radius of the circle is
    Solution

  • Question 9
    1 / -0
    The equation of circle with centre (1, 2) and tangent $$x + y - 5 = 0$$ is
    Solution

  • Question 10
    1 / -0
    If $$  x^{2}+y^{2}-2 x+2 a y+a+3=0  $$ represents a real circle with non-zero radius, then most appropriate is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now