Self Studies
Selfstudy
Selfstudy

Circles Test 6

Result Self Studies

Circles Test 6
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation $$(\mathrm{x}^{2}-\mathrm{a}^{2})^{2}+(\mathrm{y}^{2}-\mathrm{b}^{2})^{2}=0$$ represent points which are
    Solution
    $$(x^{2}-a^{2})^{2}+(y^{2}-b^{2})^{2}= 0$$ represents points
    $$x= ^{+}_{-}a$$ and $$y= ^{+}_{-}b$$
    $$\therefore (a,b), (a,-b), (-a,b)$$ and $$(-a,-b)$$ are four points
    These point lie on a circle whose centre is at $$(0,0)$$ and radius is $$\sqrt{a^2+b^2}$$
  • Question 2
    1 / -0
    A circle of radius $$5$$ units passes through the points $$(7,1),(9,5)$$. If the ordinate of the centre is less than $$2$$, then the equation of the circle is
    Solution
    Let $$(h, k)$$ is a centre of circle , so

    $$(h-7)^2+(k-1)^2= 25$$
    and $$(h-9)^2+ (k-5)^2= 25$$

    $$Let  x^2+y^2+2gx+2fy+c= 0$$  is  circle .
    so, $$(7, 1)$$  lies  on  circle  so, 

    $$50+14g+2f+c= 0$$     ----(1)
    $$(9, 5)$$ lies on circle

    $$106+18g+10f+c= 0$$     ----(2)

    and $$g^2+f^2-c= 25$$     -----(3)
    From (1) & (2),
    $$4g+8f+56= 0$$

    $$g+2f+14= 0$$
    From (1), (2), (3), (4),
    $$g= -12$$  and  $$f= -1, c= 120$$

    so, $$eq^n$$  of  circle  is

    $$x^2+y^2-24x-2y+120= 0$$
  • Question 3
    1 / -0
    The circle $${ S }_{ 1 }$$ with centre $${ C }_{ 1 }\left( { a }_{ 1 },{ b }_{ 1 } \right) $$ and radius $${r}_{1}$$ touches externally the circle $${S}_{2}$$ with centre $${ C }_{ 2 }\left( { a }_{ 2 },{ b }_{ 2 } \right) $$ and radius $${r}_{2}$$. If the tangent at their common point passes through the origin then 
    Solution
    The two circles are,
     
    $$S_1:{ \left( x-{ a }_{ 1 } \right)  }^{ 2 }+{ \left( y-{ b }_{ 1 } \right)  }^{ 2 }={ { r }_{ 1 } }^{ 2 }$$   ...(1)
    $$S_2:{ \left( x-{ a }_{ 2 } \right)  }^{ 2 }+{ \left( y-{ b }_{ 2 } \right)  }^{ 2 }={ { r }_{ 2 } }^{ 2 }$$    ...(2)

    Subtracting (2) from (1), we get the equation to the common tangent
     
    $$S_1-S_2=0$$

    $${ \left( x-{ a }_{ 1 } \right)  }^{ 2 }+{ \left( y-{ b }_{ 1 } \right)  }^{ 2 }-{ \left( x-{ a }_{ 2 } \right)  }^{ 2 }-{ \left( y-{ b }_{ 2 } \right)  }^{ 2 }=r_1^{2}-{ { r }_{ 2 } }^{ 2 }$$

    If this passes through the origin, then
    $$\left( { { a }_{ 1 } }^{ 2 }-{ { a }_{ 2 } }^{ 2 } \right) +\left( { { b }_{ 1 } }^{ 2 }-{ { b }_{ 2 } }^{ 2 } \right) ={ { r }_{ 1 } }^{ 2 }-{ { r }_{ 2 } }^{ 2 }$$
  • Question 4
    1 / -0
    The triangle PQR is inscribed in the circle $$\displaystyle x^{2}+y^{2}= 25.$$ If $$Q$$ and $$R$$ have coordinates $$\displaystyle \left ( 3, 4 \right )$$ and $$\displaystyle \left ( -4, 3 \right ),$$ respectively, then $$\displaystyle \angle QPR$$ is equal to
    Solution
    Now, length of chord $$QR=\sqrt{(-4-3)^2+(3-4)^2}=5\sqrt{2}$$

    Also, $$OR=OQ=5$$ (radii of the circle)

    $$\therefore \angle ROQ=90^{\circ}$$

    Using the theorem that arc subtended by a chord is twice the angle subtended by the chord at the arc of the circle,

     we have $$\angle QPR=45^{\circ}=\dfrac{\pi}{4}$$

  • Question 5
    1 / -0
    If chord PQ of a circle have length equal to the radius then  the distance of chord from centre in terms of radius  is
    Solution
    $$ Given-\quad \\ PQ\quad is\quad a\quad chord\quad of\quad a\quad circle\quad with\quad centre\quad O\quad such\quad that\\ OP=OQ=r=PQ\quad when\quad r\quad is\quad the\quad radius\quad of\quad the\quad circle.\\ To\quad find\quad out\quad h=ON,\quad the\quad distance\quad of\quad PQ\quad from\quad O.\\ Solution-\\ \Delta OPQ\quad is\quad equilateral\quad since\quad all\quad its\quad sides=r.\\ Now\quad height\quad of\quad an\quad equilateral\quad triangle\quad with\quad side=a\\ is\quad \frac { \sqrt { 3 }  }{ 2 } a\quad and\quad it\quad bisects\quad the\quad base\quad at\quad right\quad angle.\\ Here\quad a=r.\\ \therefore \quad The\quad height=ON=h=\frac { \sqrt { 3 }  }{ 2 } r.=\quad \\ But\quad ON\quad is\quad the\quad distance\quad of\quad the\quad chord\quad PQ\quad from\quad O\quad since\\ the\quad perpedicular\quad distance\quad of\quad a\quad chord\quad from\quad the\quad centre\quad \\ bisects\quad the\quad chord\quad at\quad right\quad angle.\\ So\quad h=ON=\frac { \sqrt { 3 }  }{ 2 }r\quad is\quad the\quad distance\quad of\quad the\quad chord\quad PQ\quad from\quad O.\\ Ans-\quad Option\quad D.\\ \\ \quad \\ \quad \quad \\ \\  $$

  • Question 6
    1 / -0
    The lines $$\displaystyle 2x - 3y = 5$$ and $$\displaystyle 3x - 4y = 7$$ intersect at the center of the circle whose area is $$154$$ sq. units, then equation of circle is
    Solution
    Since, the lines $$\displaystyle 2x - 3y = 5 \dots (1)$$ and $$\displaystyle 3x - 4y = 7 \dots (2)$$ passes through the center of the circle.

    Multiplying $$(1)$$ by 4 and $$(2)$$ by 3. Further subtracting we get,

    $$-1x=-1 \Rightarrow x=1$$

    Substituting $$x=1$$ in $$(1)$$. We get,

    $$y=-1$$

    So, point of intersection of these two lines is $$(1,-1)$$

    So, center is at $$(1,-1)$$

    Area of circle $$=\pi r^2$$

    $$154=\dfrac{22}{7} r^2$$

    $$r^2=49$$

    Equation of circle is $$(x-1)^2+(y+1)^2=r^2$$

    $$(x-1)^2+(y+1)^2=49$$

    $$x^2-2x+1+y^2-2y+1=49$$

    $$\Rightarrow x^2+y^2-2x+2y=47$$
  • Question 7
    1 / -0
    The equation of circle with origin as a centre and passing through equilateral triangle whose median is of length $$3a$$ is
    Solution
    Given, median of the equilateral triangle is $$3a$$ say $$LD $$
    In $$\displaystyle \Delta LMD$$, we have
    $$(LM)^{2}=(LD)^{2}+(MD)^{2}$$
    $$\Rightarrow \displaystyle (LM)^{2}=9a^{2}+\left(\frac{LM}{2}\right)^{2} $$ 
    $$\displaystyle\Rightarrow \frac{3}{4}(LM)^{2}=9a^{2}$$
    $$\Rightarrow (LM)^{2}=12a^{2}$$ 
    Again in triangle $$\displaystyle OMD$$,
    $$(OM)^{2}=(OD)^{2}+(MD)^{2} $$
    $$\Rightarrow \displaystyle R^{2}=(3a-R)^{2}+ \left(\frac{LM}{2}\right)^{2}$$
    $$\displaystyle\Rightarrow R^{2} =9a^{2}+R^{2}-6aR+3a^{2} $$ 
    $$\displaystyle \Rightarrow 6aR=12a^{2}$$
    $$\Rightarrow  R=2a$$
    So, equation of circle is
    $$\displaystyle (x-0)^{2}+(y-0)^{2}=(2a)^{2}$$
    $$ \Rightarrow x^{2}+y^{2}=4a^{2}$$

  • Question 8
    1 / -0
    The equation of the circle passing through the point $$(1, 1)$$ and having two diameters along the pair of lines $$x^{2}-y^{2}-2x+4y-3=0$$ is
    Solution
    $$x^{2}-y^{2}-2x+4y-3=0$$

    $$\Rightarrow x^2-2x+1 = y^2-4y+4$$
    $$\Rightarrow (x-1)^2 = (y-2)^2\Rightarrow x-1 = \pm (y-2)$$

    Thus lines are $$x-y=-1$$ and $$x+y=3$$
    Solving these lines we get the centre of the required circle which is $$(1, 2)$$

    Thus radius of the circle is $$\sqrt{(1-1)^2+(1-2)^2} = 1$$

    Hence required circle is $$(x-1)^2+(y-2)^2 = 1\Rightarrow x^2+y^2-2x-4y+4=0$$
  • Question 9
    1 / -0
    The equation of a diameter of a circle is $$x+y=1$$ and the greatest distance of any point of the circle from the diameter is $$\dfrac{1}{\sqrt{2}}$$ .Then, a possible  equation of the circle can be
    Solution
    Given diameter of circle is $$x+y=1$$
    Diameter crosses the x-axis at $$(1,0)$$ and y-axis at $$(0,1)$$
    Distance between these two points i.e. $$d=\sqrt{2}$$
    $$\Rightarrow \displaystyle r=\frac{\sqrt{2}}{2}$$
    Center of the circle is $$\displaystyle (\frac { 1 }{ 2 } ,\frac { 1 }{ 2 } )$$
    Equation of circle is 
    $$\displaystyle { (x-\frac { 1 }{ 2 } ) }^{ 2 }+{ (y-\frac { 1 }{ 2 } ) }^{ 2 }=\frac { 1 }{ 2 } $$
    $$x^{2}+y^{2}-x-y=0$$
  • Question 10
    1 / -0
    If the lines $$2x+3y+1= 0$$ and $$3x-y-4= 0$$ lie along the diameter of a circle of circumference $$10\pi $$, then equation of circle be
    Solution
    Given lines $$2x+3y+1= 0$$ and $$3x-y-4= 0$$
    Point of intersection of these lines is the center of circle.
    So, center is at (1,-1).

    Also, given circumference $$=10\pi$$
    $$\Rightarrow 2\pi r=10\pi $$
    $$\Rightarrow r=5$$

    Hence the equation of circle is
    $$(x-1)^2 +(y+1)^2=25$$
    $$x^2+y^2-2x+2y-23=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now