Self Studies

Set Theory Test 28

Result Self Studies

Set Theory Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The function $$f(x)$$ satisfies the condition $$(x-2)f(x)+2f\left(\dfrac{1}{x}\right)=2$$ for all $$x\neq 0$$. Then the value of $$f(2)$$ is 
    Solution
    Putting $$x=2$$ in $$\left( x-2 \right) f\left( x \right) +2f\left( \dfrac { 1 }{ x }  \right) =2$$
    $$\left( 2-2 \right) f\left( 2 \right) +2f\left( \dfrac { 1 }{ 2 }  \right) =2$$
    $$2f\left( \dfrac { 1 }{ 2 }  \right) =2$$
    $$f\left( \dfrac { 1 }{ 2 }  \right) =1$$
  • Question 2
    1 / -0
    Let A,B are two sets such that n(A)=4 and n(B)=6. Then the least possible number of elements in the power set of $$(A\cup B)$$ is 
    Solution
    Given,
    $$n(A)=4,n(B)=6$$

    Then the least number of possible elements in
    $$n(A\cup B)=2^{n(A)}.2^{n(B)}=2^4.2^6=2^{10}=1024$$
  • Question 3
    1 / -0
    Left A = {1, 2, 3, 4, 5, 6} and B= {1, 2, 3, 4}  be two sets, then the number of functions that can be defined from A to B such that the element '2' in B has exactly 3 pre - images i A, is equal ot
  • Question 4
    1 / -0
    Let  $$A , B$$  and  $$C$$  be pairwise independent events with  $$P ( C ) > 0$$  and  $$P ( A \cap B \cap C ) = 0$$  Then,  $$P \left( A ^ { C } \cap B ^ { C } / C \right)$$ is equal to 
    Solution
    $$\begin{array}{l} P\left( { \frac { { { A^{ C } }\cap { B^{ C } } } }{ C }  } \right) =\frac { { P\left( { \left( { { A^{ C } }\cap { B^{ C } } } \right) \cap C } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( { \left( { 1-A } \right) \left( { 1-B } \right) \cdot C } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left[ { \left( { 1-A-B+AB } \right) \cdot C } \right]  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( { CA } \right) -P\left( { CB } \right) +P\left( { ABC } \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( C \right) \cdot P\left( A \right) -P\left( C \right) \cdot P\left( B \right) +P\left( A \right) P\left( B \right) P\left( C \right)  } }{ { P\left( C \right)  } }  \\ =\frac { { P\left( C \right) -P\left( C \right) \cdot P\left( A \right) -P\left( C \right) \cdot P\left( B \right) +P\left( { A\cap B\cap C } \right)  } }{ { P\left( C \right)  } }  \\ =1-P\left( A \right) -P\left( B \right)  \\ =P\left( { { A^{ C } } } \right) -P\left( B \right)  \\ Hence\, ,\, option\, A\, is\, correct\, answer. \end{array}$$
  • Question 5
    1 / -0
    The value of c for which the set $$\{(x, y)|x^2+y^2+2x\leq 1\}\cap \{(x, y)|x-y+c\geq 0\}$$ contains only one point in common is?
    Solution
    $$x^2+y^2+2x-1\le 0$$           $$x-y+c\ge 0$$
    To contain only one point in common the line should be a tangent to the circle.
    $$\Rightarrow x^2+y^2+2x+1-1-1 \le 0$$
    $$\Rightarrow (x+1)^2+y^2\le 2$$
    Centre= $$(-1,0)$$
    Radius= $$\sqrt {2}$$
    $$(-1,0)$$       $$x-y+c \ge 0$$
    $$d=\left|\cfrac {-1+c}{\sqrt {2}}\right|=\sqrt {2}$$
    $$\Rightarrow |c-1|=2$$
    $$c-1=2$$      $$c-1=-2$$
    $$c=3$$             $$c=-1$$

    $$\therefore c={3,-1}$$
  • Question 6
    1 / -0
    Let $$\displaystyle S=\left\{a\in N,a\le100\right\}$$ if the equation $$\displaystyle[{\tan}^{2}x]-\tan x-a=0$$ has real roots, then the number of elements $$S$$ is (when $$[.]$$ is greatest integer function)
    Solution
    Given equation is,
    $$[tan^2x]-tanx-a=0$$
    $$\therefore D=b^2-4ac=(-1)^2-4(1)(-a)$$

    $$=1+4a$$
    So D must be a  odd perfect square

    $$\implies \sqrt{1+4a}=2\lambda+1$$

    $$\implies  1+4a=4\lambda^2+1+4\lambda$$

    $$\implies a=\lambda(\lambda+1)$$

    For different values og=f $$\lambda$$ we get
    $$a=0,2,6,12,20,30,42,56,72,90$$

    Hence there are $$10 $$ values of $$a$$.

  • Question 7
    1 / -0
    If $$A=\left\{ 1,3,5,7,9,11,13,15,17 \right\} ,B=\left\{ 2,4,....,18 \right\} $$ and N is the universal set, then $$A'\cup \left( \left( A\cup B \right) \cap B' \right) $$
    Solution
    $$A=\left\{1,3,5,7,9,11,13,15,17\right\}$$

    $${A}^{\prime}=N-A=N-\left\{1,3,5,7,9,11,13,15,17\right\}=\left\{2,4,6,8,10,12,14,16,18\right\}$$

    $$A\cup B=\left\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\right\}$$

    $${B}^{\prime}=N-B=N-\left\{2,4,6,8,10,12,14,16,18\right\}=\left\{1,3,5,7,9,11,13,15,17\right\}$$

    $$\left(A\cup B\right)\cap {B}^{\prime}$$

    $$=\left\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\right\}\cap\left\{1,3,5,7,9,11,13,15,17\right\}$$

    $$=\left\{1,3,5,7,9,11,13,15,17\right\}$$

    $${A}^{\prime}\cup \left(\left(A\cup B\right)\cap {B}^{\prime}\right)$$

    $$=\left\{2,4,6,8,10,12,14,16,18\right\}\cup\left\{1,3,5,7,9,11,13,15,17\right\}$$

    $$=\left\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\right\}=N$$
  • Question 8
    1 / -0
    If $$A=\left\{ 1,2,4 \right\} ,B=\left\{ 2,4,5 \right\} $$ and $$C=\left\{ 2,5 \right\} $$, then $$\left( A-B \right) \times \left( B-C \right) =$$
    Solution
    $$A=\left\{1,2,4\right\}$$ and $$B=\left\{2,4,5\right\}$$

    $$A-B=\left\{1,2,4\right\}-\left\{2,4,5\right\}=\left\{1\right\}$$

    $$B=\left\{2,4,5\right\}$$ and $$C=\left\{2,5\right\}$$

    $$B-C=\left\{2,4,5\right\}-\left\{2,5\right\}=\left\{4\right\}$$

    $$\left(A-B\right)\times\left(B-C\right)=\left\{1\right\}\times \left\{4\right\}=\left(1,4\right)$$
  • Question 9
    1 / -0
    If $$A=\left\{1, 2, 3, 4\right\}$$, then the number of subsets of $$A$$ that contain the element $$2$$ but not $$3$$, is 
    Solution
    The subsets are be $$\left\{1, 2, 4\right\},\left\{1, 2\right\}, \left\{2, 4\right\}, \left\{2\right\}$$
    Number of subsets of $$A$$ that contain the element $$2$$ but not $$3$$ is $$4$$

  • Question 10
    1 / -0
    Let $$p$$ and $$q$$ be two statements. amongst the following, the statement is equivalent to $$p\rightarrow q$$ is
    Solution
    $$ \begin{array}{l} \text { Given, } \quad P \longrightarrow q \\ \text { ne trinow that, } \rightarrow \text { - if then } \\ \Rightarrow \text { if } P \text { then } q \end{array} $$
    $$ \begin{array}{lll} p & q & p \rightarrow q \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} $$
    $$ \begin{array}{c} \Rightarrow \text { Evaluating option } A(p \wedge \sim q) \\ P \text { iq } p \wedge \sim q \\ 111 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ \text { Incorrect assumption } \end{array} $$
    $$ \begin{array}{c} \Rightarrow \text { Eualuating } B(\sim p \wedge q) \\ \sim p \quad q \quad \sim p \wedge q \\ 0 \\ 0 \\ 1 \\ 1 \quad 0 \\ \text { Incorrect assumption } \end{array} $$
    $$ \begin{array}{rlrl} \Rightarrow \text { Evaluating } & c(\sim p \vee q) \\ & \sim p & q & \sim p v q \\ & 0 & 1 & & \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ & \text { correct assumption } \end{array} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now