Self Studies

Relations Test 15

Result Self Studies

Relations Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle A= \left \{ a,b,c,d \right \}, B= \left \{ 1,2,3 \right \}$$ find whether or not the following sets of ordered pairs are relations from $$A$$ to $$B$$ or not.
    $$\displaystyle R_{1}= \left \{ \left ( a,1 \right ), \left ( a,3 \right ) \right \}$$
    $$\displaystyle R_{2}= \left \{ \left ( a,1 \right ), \left ( c,2 \right ), \left ( d,1 \right ) \right \}$$
    $$\displaystyle R_{3}= \left \{ \left ( a,1 \right ), \left ( b,2 \right ), \left ( 3,c \right ) \right \}.$$
    Solution
    Given, $$ A= \left \{ a,b,c,d \right \}, B= \left \{ 1,2,3 \right \}$$  and 
    $$ R_{1}= \left \{ \left ( a,1 \right ), \left ( a,3 \right ) \right \} $$
    $$ R_{2}= \left \{ \left ( a,1 \right ), \left ( c,2 \right ), \left ( d,1 \right ) \right \} $$
    $$ R_{3}= \left \{ \left ( a,1 \right ), \left ( b,2 \right ), \left ( 3,c \right ) \right \}.$$
    We know that every relation from $$A$$ to $$B$$ will be a subset of $$A \times B$$.
    Thus, both $$ R_{1} $$ and  $$R_{2} $$  are subsets of $$ A\times B$$  and hence are relations but $$ R_{3}$$ is not a relation because $$R_{3}$$  is not a subset of $$A\times B$$ because the element $$ (3,c) \notin (A\times B).$$ It belongs to $$B\times A.$$
  • Question 2
    1 / -0
    If ,$$(x-1, y+2)= (7, 5)$$ then values of $$x$$ and $$y$$ are
    Solution
    as the given ordered pairs are equal,
    $$x-1=7$$  and  $$y+2=5$$
    $$\therefore x=8$$ and $$y=3$$
  • Question 3
    1 / -0
    Ordered pairs (a, 3) and (5, x) are equal ,the values of $$a$$ and $$x$$ are
    Solution
    If two ordered pairs are equal, then both x - coordinates are equal and both y-coordinates are equal.

    Since  $$ (a, 3)  =  (5,x)  $$ then ,$$ a = 5 , x = 6 $$
  • Question 4
    1 / -0
    If $$(x, y) = (3, 5)$$ ; then values of $$x$$  and $$y $$ are 
    Solution

  • Question 5
    1 / -0
    Given $$M = (0, 1, 2)$$ and $$N = (1, 2, 3)$$. Find $$(N - M) \times (N \cap M)$$
    Solution
    $$ N - M $$ means subtracting  the common elements of $$M$$ and $$N$$ from $$N$$.
    So, $$ N - M =\{3\}$$ 

    Intersection of two sets has the elements which are common in both the sets.
    So, $$ N \cap M =\{1,2\}$$
    Cartesian product of two sets is found by forming ordered pairs, where $$x$$-coordinate is from first set and $$y$$-coordinate is from second set.
    So, $$ (N - M) \times (N \cap M) =\{ (3,1), (3,2) \}$$.
  • Question 6
    1 / -0
    If $$A = \{5, 7\}, B= \{7, 9\}$$ and $$C = \{7, 9, 11\},$$ find $$A \times (B \cup C)$$
    Solution
    Given, $$A = \{5, 7\}, B= \{7, 9\}$$ and $$C = \{7, 9, 11\},$$ 

    Union of two sets has all the elements of both the sets.
    So, $$ B \cup C = $$ { $$ 7,9, 11 $$ }
    Product of two sets is found by forming ordered pairs by multiplying every element of the first set with the second set.
    So, $$ A \times (B \cup C )=  $$ { $$ (5,7), (5,9), (5,11), (7,7),(7,9), (7,11) $$ }
  • Question 7
    1 / -0
    If $$A = \{5, 7\}, B= \{7, 9\}$$ and $$C = \{7, 9, 11\},$$ find $$(A \times B) \cup (A \times C)$$
    Solution
    Product of two sets is found by forming ordered pairs by multiplying every element of the first set with the second set.
    So, $$ A \times B =  $$ { $$ (5,7), (5,9), (7,7),(7,9) $$ }
    And  $$ A \times C =  $$ { $$ (5,7), (5,9), (5,11), (7,7),(7,9), (7,11) $$ }
    Union of two sets has all the elements of both the sets.
    So, $$ (A \times B) \cup ( A \times C) = $$ { $$ (5,7), (5,9), (5,11), (7,7),(7,9), (7,11) $$ }
  • Question 8
    1 / -0
    If $$n(A) = 4$$ and $$n(B) = 5$$, then $$n(A \times  B) = $$
    Solution
    Given, $$n\left( A \right) =4$$ and $$n\left( B \right) =5$$ 
    $$ \Rightarrow n\left( A\times B \right) =n\left( A \right) \cdot n\left( B \right) $$ 
    $$\Rightarrow  n(A\times B)=4\cdot 5=20$$ 
    So, answer is $$20$$.
  • Question 9
    1 / -0
    If $$\displaystyle A=\left \{ 2, 3, 5 \right \}, B=\left \{ 2, 5, 6 \right \}$$ then  $$\left ( A-B \right )\times \left ( A\cap B \right )$$ is
    Solution
    $$\displaystyle A-B=\left \{ 3 \right \},A\cap B=\left ( 2, 5 \right ).$$ 

    $$\displaystyle \therefore \left ( A-B \right )\times \left ( A\cap B \right )=\left \{ \left ( 3, 2 \right ),\left ( 3, 5 \right ) \right \}.$$
  • Question 10
    1 / -0
    If $$R$$ be a relation defined from $$\displaystyle A=\left \{ 1,2,3,4 \right \}$$ to $$\displaystyle B=\left \{ 1,3,5 \right \},i.e.\left ( a,b \right )\in R$$ iff $$a<b$$ then $$\displaystyle R o R^{-1}$$ is
    Solution
    $$\displaystyle R;A\in B$$ under given condition $$a<b$$ is given by,
    $$\displaystyle R=\left \{ \left ( 1,3 \right ),\left ( 1,5 \right

    ),\left ( 2,3 \right ),\left ( 2,5 \right ),\left ( 3,5 \right ),\left (

    4,5 \right ) \right \}$$
    $$\displaystyle R^{-1}=\left \{ \left ( 3,1

    \right ),\left ( 5,1 \right ),\left ( 3,2 \right ) ,\left ( 5,2 \right

    ),\left ( 5,3 \right )\left ( 5,4 \right )\right \}$$
    $$\displaystyle

    R o R^{-1}:$$ For composing $$\displaystyle R o R^{-1}$$ we will pick up an element of $$\displaystyle R^{-1}$$ first and then of $$R$$
    $$\displaystyle

    \left ( 3,1 \right )\in R^{-1}\left ( 1,3 \right )\in

    R\rightarrow \left ( 3,3 \right )\in  R o R^{-1}$$
    $$\displaystyle

    \therefore R o R^{-1}=\left \{ \left ( 3,3 \right ),\left ( 3,5 \right

    ),\left ( 5,3 \right ),\left ( 5,5 \right ) \right \}$$ only.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now