Self Studies

Relations Test ...

TIME LEFT -
  • Question 1
    1 / -0

    The relation P defined from R to R as a P b $$\Leftrightarrow$$ 1 + ab > 0, for all a, b $$\epsilon$$ R is

  • Question 2
    1 / -0

    If R is a relation on a finite set having n elements, then the number of relations on A is :

  • Question 3
    1 / -0

    If $$A=\left\{2,3,5\right\}, B=\left\{2,5,6\right\}$$, then $$\left( A-B \right) \times \left( A\cap B \right)$$ is

  • Question 4
    1 / -0

    If $$A=\left\{1,2,3\right\}$$ and $$B=\left\{3,8\right\},$$ then
    $$\left( A\cup B \right) \times \left( A\cap B \right)$$ is

  • Question 5
    1 / -0

    Let $$R = gS - 4$$. When $$S = 8, R = 16$$. When $$S = 10, R$$ is equal to

  • Question 6
    1 / -0

    If the line $$x=\alpha$$ divides the area of the region $$R=\left\{(x,y)\in \mathbb{R}^2:x^3\le y\le x,0\le x\le 1\right\}$$ into two equal parts, then 

  • Question 7
    1 / -0

    Find the domain of the function defined as $$f(x)=\dfrac{1}{1-x^2}$$.

  • Question 8
    1 / -0

    If $$aN = (ax/x \ \epsilon \ N)$$ and $$bN \cap cN = dN,$$, where $$b, c \ \epsilon N$$ are relatively prime, then 

  • Question 9
    1 / -0

    Let $$f\left( x \right) :\begin{cases} x,\quad x\quad is\quad rational \\ 0,\quad x\quad is\quad irrational \end{cases}$$
    and 
    $$g\left( x \right) :\begin{cases} 0,\quad x\quad is\quad rational \\ x,\quad x\quad is\quad irrational \end{cases}$$

    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$, then $$(f-g)$$ is

  • Question 10
    1 / -0

    If $$f:R \to R$$ is a function satisfying $$f(x + y) = f(xy)$$ for all $$x, y \in R$$ and $$f\left(\dfrac{3}{4}\right) = \left( \dfrac{3}{4} \right)$$ , then $$f\left( \dfrac{9}{16} \right)$$ =

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now