Self Studies

Relations Test 27

Result Self Studies

Relations Test 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The relation P defined from R to R as a P b $$\Leftrightarrow$$ 1 + ab > 0, for all a, b $$\epsilon$$ R is
    Solution
    $$Pb\Leftrightarrow 1+ab>0$$

    i)Reflexive: $$a\times a$$ for any real value except 0 is positive.Hence $$0\times 0+1>1\Rightarrow a\times a+1>0$$

    ii)Symmetric: if $$a\times b+1>0$$  then  $$b\times a+1$$ will also be $$>0$$

    iii)Not Transitive: a=-2,b=0\Rightarrow -2\times 0+1>0$$

    $$b=0,c=4\Rightarrow 0\times 4+1>0$$

    but a is not related to c  $$\because a=-2,c=4\Rightarrow -2\times 4+1<0$$
  • Question 2
    1 / -0
    If R is a relation on a finite set having n elements, then the number of relations on A is :
    Solution
    Here, the required number of relations on A can be found out by the formula $$2^{n^2}$$.
    Hence, option B is correct.
  • Question 3
    1 / -0
    If $$A=\left\{2,3,5\right\}, B=\left\{2,5,6\right\}$$, then $$\left( A-B \right) \times \left( A\cap B \right)$$ is
    Solution
    Ans. $$(c)$$.
    $$A-B=\{ 3\} ,A\cap B=(2,5)$$.
    $$\therefore \left( A-B \right) \times \left( A\cap B \right) =\{ (3,2),(3,5)\}$$.
  • Question 4
    1 / -0
    If $$A=\left\{1,2,3\right\}$$ and $$B=\left\{3,8\right\},$$ then
    $$\left( A\cup B \right) \times \left( A\cap B \right)$$ is
    Solution
    $$\left( A\cup B \right) =\{ 1,2,3,8\}$$
    $$\left( A\cap B \right) =\{ 3\}$$   

    $$\therefore \left( A\cup B \right) \times \left( A\cap B \right)$$ 
    $$=\left\{ (1,3),(2,3),(3,3),(8,3) \right\}$$

    Ans.$$(b)$$.
  • Question 5
    1 / -0
    Let $$R = gS - 4$$. When $$S = 8, R = 16$$. When $$S = 10, R$$ is equal to
    Solution
    $$16 = 8g - 4; \therefore g = 2\dfrac {1}{2}; \therefore R = \left (2\dfrac {1}{2}\right ) 10 - 4 = 21$$.
  • Question 6
    1 / -0
    If the line $$x=\alpha$$ divides the area of the region $$R=\left\{(x,y)\in \mathbb{R}^2:x^3\le y\le x,0\le x\le 1\right\}$$ into two equal parts, then 
    Solution
    So, $$\int _{ 0 }^{ \alpha  }{ (x-{ x }^{ 3 }) } dx=\int _{ \alpha  }^{ 1 }{ (x-{ x }^{ 3 }) } dx\\ { [\cfrac { { x }^{ 2 } }{ 2 } -\cfrac { { x }^{ 4 } }{ 4 } ] }_{ 0 }^{ \alpha  }={ [\cfrac { { x }^{ 2 } }{ 2 } -\cfrac { { x }^{ 4 } }{ 4 } ] }_{ \alpha  }^{ 1 }\\ \cfrac { { \alpha  }^{ 2 } }{ 2 } -\cfrac { { \alpha  }^{ 4 } }{ 4 } =\cfrac { { 1 }^{ 2 } }{ 2 } -\cfrac { { 1 }^{ 4 } }{ 4 } -\cfrac { { \alpha  }^{ 2 } }{ 2 } +\cfrac { { \alpha  }^{ 4 } }{ 4 } \\ \cfrac { { 2\alpha  }^{ 2 } }{ 2 } -\cfrac { 2{ \alpha  }^{ 4 } }{ 4 } =\cfrac { { 1 } }{ 4 } ={ \alpha  }^{ 2 }-\cfrac { { \alpha  }^{ 4 } }{ 2 } \\ \cfrac { { 1 } }{ 2 } ={ 2\alpha  }^{ 2 }-{ \alpha  }^{ 4 }\\ { 2\alpha  }^{ 4 }-4{ \alpha  }^{ 2 }+1=0$$
    Thus, $${ 2\alpha  }^{ 4 }-4{ \alpha  }^{ 2 }+1=0$$

  • Question 7
    1 / -0
    Find the domain of the function defined as $$f(x)=\dfrac{1}{1-x^2}$$.
    Solution
    $$f\left(x\right)=\dfrac{1}{1-x^{2}}$$
    For existance $$1-x^{2}\neq 0$$
    $$\Rightarrow x\neq+1,-1$$
    $$\Rightarrow x\in R-\left\{1,-1\right\}$$
  • Question 8
    1 / -0
    If $$aN = (ax/x \ \epsilon \ N)$$ and $$bN \cap cN = dN,$$, where $$b, c \ \epsilon N$$ are relatively prime, then 
    Solution

  • Question 9
    1 / -0
    Let $$f\left( x \right) :\begin{cases} x,\quad x\quad is\quad rational \\ 0,\quad x\quad is\quad irrational \end{cases}$$
    and 
    $$g\left( x \right) :\begin{cases} 0,\quad x\quad is\quad rational \\ x,\quad x\quad is\quad irrational \end{cases}$$

    If $$f:R\rightarrow R$$ and $$g:R\rightarrow R$$, then $$(f-g)$$ is

    Solution
    When x is rational  $$f(x)=x,g(x)=0$$ 
     
    $$\therefore (f-g)=x-0=x$$.So for each rational no. in $$(f-g)$$ there is the same rational number in co domain $$f(x)=0,g(x)=x$$ [when x is irrational]

    $$\therefore (f-g)=0-x=-x$$

    So for each irrational number x in domain, we have $$(-x)$$ in co domain.

    Conversely for each negative irrational number, there is an element in domain.

    But for positive irrational no. there is no corresponding element.

    Thus $$(f-g)$$ is one -one and into.
  • Question 10
    1 / -0
    If $$f:R \to R$$ is a function satisfying $$f(x + y) = f(xy)$$ for all $$x, y \in R$$ and $$f\left(\dfrac{3}{4}\right) = \left( \dfrac{3}{4} \right)$$ , then $$f\left( \dfrac{9}{16} \right)$$ =
    Solution
    $$f(x+y)=f(xy)\quad -(i)\\ f(\cfrac { 3 }{ 4 } )=(\cfrac { 3 }{ 4 } )\\ f(\cfrac { 9 }{ 16 } )=f(\cfrac { 3 }{ 4 } \times \cfrac { 3 }{ 4 } )\\ from(i)\\ f(\cfrac { 3 }{ 4 } \times \cfrac { 3 }{ 4 } )=f(\cfrac { 3 }{ 4 } +\cfrac { 3 }{ 4 } )\\ f(\cfrac { 3 }{ 4 } \times 2)=f(\cfrac { 3 }{ 2 } )\\ \because f(\cfrac { 3 }{ 4 } )=\cfrac { 3 }{ 4 } \quad constant\quad func.\\ \therefore f(\cfrac { 3 }{ 2 } )=\cfrac { 3 }{ 4 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now