Self Studies

Relations Test 28

Result Self Studies

Relations Test 28
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the domain of the function defined as $$f(x)=\dfrac{x+1}{2x+3}$$.
    Solution

    Given:

    $$ f\left ( x \right ) = \frac{x + 1}{2x + 3}  $$

    $$ 2x + 3 = 0  $$

    $$ x = -\frac{3}{2} $$

    The domain is $$ R - \left \{ -\frac{3}{2} \right \} $$.

    Hence, the domain of the function is $$ R - \left \{ -\frac{3}{2} \right \} $$.

  • Question 2
    1 / -0
    Let R be a relation from$$ A=\left\{ 1,2,3,4 \right\}  to B=\left\{ 1,3,5 \right\}$$  such that $$R=[(a,b):a<b,where\ a\epsilon A\ and\ b\epsilon B]$$. What is $$R$$ equal to?
    Solution
    $$A=\{ 1,2,3,4\} \quad ,\quad B=\{ 1,3,5\} \\ R=[(a,b):a<b,where\quad a\epsilon A\quad \& \quad b\epsilon B]\\ R=[(1,3),(1,5),(2,3),(2,5),(3,5),(4,5)]$$
  • Question 3
    1 / -0
    $$x*y=\sqrt {\dfrac {(x+y)(y^{2}-12x)}{(x-2)(y-7)}}$$ then what will be the value of $$5*9$$?
    Solution
    $$x\ast y=\sqrt{\dfrac{(x+y)(y^{2}-12x)}{(x-2)(y-7)}}$$

    $$5\ast 9=\sqrt{\dfrac{(5+9)(81-60)}{(3)(2)}}=\sqrt{\dfrac{(14)(21)}{(3)(2)}}=\sqrt{(7)(7)}$$

    $$=\sqrt{49}$$

    $$=7$$
  • Question 4
    1 / -0
    Let $$R$$ be a reflexive relation in a finite set having $$n$$ elements and let there be $$m$$ ordered pairs in $$R$$. Then,
    Solution
    $$\underset{(n\quad values\quad possible)}{\underset{\downarrow}{a R a}}$$                  $$\underset{n\quad elements}{\underset{\downarrow}{a\in A}}$$
    Given m ordered pairs. [We know n values possible that is at least n values cut of m]
    $$\therefore m\geq n$$.
  • Question 5
    1 / -0
    Let S be a non-empty set. Let R be a relation on P(S), defined as ARB$$\Leftrightarrow A\cap B\neq \phi$$. The relation R is?
    Solution

  • Question 6
    1 / -0
    If $$f:\,R\, \to R\,$$ is an even function which is differentiable on R and $${f^N}\left( \pi  \right) = 1\,the\,{f^N}\left( { - \pi } \right)\,{\rm{is}}$$
    Solution

  • Question 7
    1 / -0
    Let R be a relation from N to N defined by 
    $$R = \left\{ {\left( {a,\,b} \right):a,\,b\, \in \,N\,\,and\,\,a = {b^2}} \right\}$$
    Solution

  • Question 8
    1 / -0
    Let $$A = \left\{ {a,\,b,\,c} \right\}$$ and $$B = \left\{ {4,\,5} \right\}$$. Consider a relation defined from set A to set B, then R is equal to
    Solution
    A relation from set $$A$$ to set $$B$$ is called
    $$A\times B$$ and have following elements 
    $$A\times B=\left\{(a, 4),\ (a, 5),\ (b, 4),\ (b, 5),\ (c, 4),\ (c, 5)\right\}$$ 
    Total $$6$$ elements
    $$C$$ is correct
  • Question 9
    1 / -0
    If $$A = \{2, 3, 5\}$$ and $$B = \{5, 7\}$$, find the set with highest number of elements:
    Solution
    $$A=\left \{ 2,3,5 \right \}$$

    $$B=\left \{ 5,7 \right \}$$

    $$A\times B=\left \{ (2,5),(2,7),(3,5),(3,7),(5,5),(5,7) \right \}$$

    $$B\times A=\left \{ (5,2),(5,3),(5,5),(7,2),(7,3),(7,5) \right \}$$

    $$A\times A=\left \{ (2,2),(2,3),(2,5),(3,2),(3,3),(3,5),(5,2),(5,3),(5,5) \right \}$$

    $$B\times B=\left \{ (5,5),(5,7),(7,5),(7,7) \right \}$$

    $$\therefore A\times A$$ has the highest number of elements
  • Question 10
    1 / -0
    If $$f:R \to R$$ is defined by $$f\left( x \right) = {x^2} - 3x + 2$$ and $$f\left( {{x^2} - 3x - 2} \right) = a{x^4} + b{x^3} + c{x^2} + dx + e$$ then $$a + b + c + d + e = $$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now