Self Studies

Relations Test ...

TIME LEFT -
  • Question 1
    1 / -0

    Let $$R$$ be a relation on $$N$$ defined by $$x+2y=8$$. The domain of $$R$$ is

  • Question 2
    1 / -0

    Let $$A\equiv \left\{1,2,3,4\right\},\ B\equiv \left\{a,b,c\right\}$$, then number of function from $$A\rightarrow B$$, which are not onto is

  • Question 3
    1 / -0

    If domain of $$y = f\left( x \right)$$ is $$ \left[ { - 3,\,\,2} \right]$$ then domain of $$y = f\left( {\left| {\left[ x \right]} \right|} \right)$$ is

  • Question 4
    1 / -0

    Let  $$R = \{ ( 3,3 ) , ( 6,6 ) , ( 9,9 ) , ( 6,12 ) , ( 3,9 ) , ( 3,12 ) , ( 3,6 ) \}$$  be a relation on the set  $$A=\{ 3,6,9,12\} .$$  Then the relation  $$R ^ { - 1 }$$  is

  • Question 5
    1 / -0

    Consider the following relations :-
    $$R=\{ (x,y):x,y$$  are real numbers and  $$x =w y$$  for some rational number  $$w \}$$ :
    $$S = \{ \left( \dfrac { m } { n } , \dfrac { p } { q } \right) : m , n , p$$  and  $$q$$  are integers such that   $${ n },{ q } \neq 0$$  and  $${ qm }={ pn }\}.$$   Then :

  • Question 6
    1 / -0

    If $$A=\left\{1,2,3\right\}$$, the number of symmetric relation in $$A$$ is

  • Question 7
    1 / -0

    If $$A=\left\{ 2,3,5 \right\} ,B=\left\{ 4,6,8 \right\} $$, then the relation from $$A$$ into $$B$$ is 

  • Question 8
    1 / -0

    If A= {a, b} then possible number of relation on the set A.

  • Question 9
    1 / -0

    If n(A)=4, n(B)=3, $$n(A\times B\times C)=24,then\quad n(C)$$ is equal to 

  • Question 10
    1 / -0

    If a set $$A$$ has $$n$$ elements then the number of relations defined on $$A$$ is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now