Self Studies

Relations Test 38

Result Self Studies

Relations Test 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let R be a relation on the set of integers given by $$ aRb \leftrightarrow a = 2^k .b $$ for some integer $$k.$$ Then $$R$$ is 
    Solution

  • Question 2
    1 / -0
    Total number of equivalence relations defined in the set $$S=\left\{a, b, c\right\}$$ is?
    Solution

  • Question 3
    1 / -0
    Let $$A={1,2,3}$$. Then number of equivalence relations containing $$(1,2)$$ is
    Solution
    $$A=\left\{1,2,3\right\}$$
    For equivalence relation containing $$(1,2)$$
    For symmetric, it must consists $$(1,2)$$ and $$(2,1)$$.
    For transitivity, it must consists $$(1,3)$$ and $$(3,2)$$ and $$(1,2),(2,1),(2,3),(3,1)$$
    For reflexivity, it must consists $$(1,1)$$ and $$(2,2),(3,3)$$
    $$\Rightarrow R=\left\{(1,1),(2,2),(2,3),(3,3),(1,2)(1,3),(2,1),(3,1),(3,1)\right\}$$
    $$\Rightarrow$$ Only $$1$$ such relation is possible.
  • Question 4
    1 / -0
    If R is a reflexive relation on a finite set A having n-elements, and there are m ordered pairs in R. then?
    Solution

  • Question 5
    1 / -0
    Let R be a relation from $$ A=\{1,2,3,4\}$$ to $$B=\{1,3,5\}$$such that R=[(a,b):a<b where a\in{A} and b\in{B}].What is $$RoR^{-1} $$ equal to
    Solution

  • Question 6
    1 / -0
    Let $$R$$ a relation on the set $$N$$ be defined by $$\left\{ \left( x,y \right) |x,y\in N,2x+y=41 \right\}$$. Then $$R$$ is 
    Solution

    Given R:{(x,y):xNyN,2x+y=41}R:{(x,y):xNyN,2x+y=41}

     2x+y=412x+y=41

     y=41−2xy=41−2x

     Since yNy>0yNy>0

     41−2x>041−2x>0

     −2x>−41−2x>−41

     2x<412x<41

     x<412x<412

     Since xN.xN. x can take values ={1,2,3....20}={1,2,3....20}

     Domain of R={1,2,3.....20}R={1,2,3.....20}

     Range of R is y=41−2xforx={1,2,3....20}y=41−2xforx={1,2,3....20}

     Range of R={1,3,.......,37,39}R={1,3,.......,37,39}

     When x=1y=41−2=39x=1y=41−2=39

     When x=2y=41−2x×2=39x=2y=41−2x×2=39

     When x=20y=40−2×20=1x=20y=40−2×20=1

     Domain of f={1,2.....20}f={1,2.....20}

     Range of f={1,3......37,39}f={1,3......37,39}

     R is not reflexive

     Since (1,1) does not satisfy

     2x+y=412x+y=41

     2×1+1≠412×1+1≠41

     R is not symmetric since (1,39)R(1,39)R satisfies 2x+y=41but(39,1)R2x+y=41but(39,1)R

     Since 2×39+1≠412×39+1≠41

     but 2×1+39=412×1+39=41

     Solution:R is not transitive since (1,39) ∈∈ but no values for x=39. satisfies the given relation

     

  • Question 7
    1 / -0
    $$f:\left( { - \infty ,\infty } \right) \to \left( {0,1} \right]$$ defined by $$f\left( x \right) = \frac{1}{{{x^2} + 1}}$$ is 
    Solution

  • Question 8
    1 / -0
    Let $$X=\left\{ x \epsilon {R};\cos(\sin\ x)=\sin(\cos\ x)\right\}$$. The number of elements in $$X$$ is 
    Solution

  • Question 9
    1 / -0
    If the relation $$R:A \to B$$ where $$A = \left\{ {1,2,3,4} \right\},B = \left\{ {1,3,5} \right\}$$ is defined by $$R = \left\{ {\left( {x,y} \right):x < y,x \in A,y \in B} \right\}$$ then $$Ro{R^{ - 1}} = $$ 
    Solution

  • Question 10
    1 / -0
    For real number $$x$$ and $$y$$, define a relationship $$R$$ {;$$x\ Ry$$ if and only if $$x-y+\sqrt{2}$$ is an irrational number }. Then the relation $$R$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now