Self Studies

Numerical Applications Test 3

Result Self Studies

Numerical Applications Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find the mean of:
    $$5, 15, 20, 8$$ and $$12$$.
    Solution
    The observations are: $$5, 15, 20, 8, 12$$
    Mean $$= \cfrac{\text{Sum}}{\text{Number of observations}}$$
    Mean $$= \cfrac{5 + 15 + 20 + 8 + 12}{5}$$
    mean $$= \cfrac{60}{5} = 12$$
  • Question 2
    1 / -0
    Find the mean of $$43, 51, 50, 57$$ and $$54$$
    Solution
    The observations are : $$43, 51, 50, 57$$ and $$54$$
    mean $$= \cfrac{\text{Sum}}{\text{Count of numbers}}$$
    mean $$= \cfrac{43 + 51 + 50 +57 +54}{5}$$
    mean $$= \cfrac{255}{5}$$
    mean $$= 51$$
  • Question 3
    1 / -0
    Find the mean of $$43, 51, 50, 57$$ and $$54$$.
    Solution
    Mean of $$43, 51, 50, 57, 54$$
    Mean $$= \cfrac{\text{Sum}}{\text{Number of observations}}$$
    Mean $$= \cfrac{43 + 51 + 50 + 57 + 54}{5} = \cfrac{255}{5} = 51$$
  • Question 4
    1 / -0
    Find the mean of the following data: $$18, 33, 30, 21$$ and $$13$$.
    Solution
    Given set of data is $$18,33,30,21,13$$
    Arranging the data in ascending order, we get $$13,18,21,30,33$$
    No of terms(numbers) $$=n=5$$ 
    Mean $$=\dfrac{\text{Sum of numbers}}{n}$$
              $$=\dfrac{13+18+21+30+33}{5}=\dfrac{115}{5}=23$$
    Thus, Mean of given data is $$23$$.
    Hence, option B is correct.
  • Question 5
    1 / -0
    $$12$$ men can complete a piece of work in $$16$$ days. How many days will $$4$$ men take to complete the task?
    Solution
    $$1$$ man will complete the job in $$16 \times 12 $$ days.
    So, $$4$$ will do in $$\displaystyle \frac{12 \times 16}{4} = 48$$ days.
  • Question 6
    1 / -0
    Find the mean of the observations $$8, 12, 16, 22, 10$$ and $$4$$.
    Solution
    The given observations are: $$8, 12, 16, 10, 22, 4$$
    Mean $$= \cfrac{\text{Sum}}{\text{Number of observations}}$$
    Mean $$= \cfrac{8+ 12 + 16 + 10 + 22 + 4}{6} = \cfrac{72}{6} = 12$$
  • Question 7
    1 / -0
    $$A$$ does half as much work as $$B$$ in three fourth of the time. If together they take 18 days to complete a work, how much time shall $$B$$ take to do it?
    Solution
    Let $$B$$ complete the work in $$x$$ days.
    $$\Rightarrow    B$$'s 1 days' work $$= \displaystyle\frac { 1 }{ x }$$

    $$\therefore   A$$ complete $$\displaystyle\frac { 1 }{ 2 }$$ of the work in $$\displaystyle\frac { 3x }{ 4 }$$ days

    $$\Rightarrow    A$$'s 1 days' work $$= \displaystyle\frac { \displaystyle\frac { 1 }{ 2 }  }{ \displaystyle\frac { 3x }{ 4 }  } = \displaystyle\frac { 2 }{ 3x }$$

    Given, $$\displaystyle\frac { 1 }{ x } + \displaystyle\frac { 2 }{ 3x } = \displaystyle\frac { 1 }{ 18 }$$

    $$\Rightarrow    \displaystyle\frac { 3+2 }{ 3x } = \displaystyle\frac { 1 }{ 18 }       \Rightarrow           \displaystyle\frac { 5 }{ 3x } = \displaystyle\frac { 1 }{ 18 }$$

    $$\Rightarrow     3x = 90                 \Rightarrow            x = 30$$
  • Question 8
    1 / -0
    $$P$$ can complete a work in $$12$$ days working $$8$$ hours a day. $$Q$$ can complete the same work in $$8$$ days working $$10$$ hours a day. If both $$P$$ and $$Q$$ work together, working $$8$$ hours a day, in how many days can they complete the work?
    Solution
    $$P$$ can complete the work in $$\left( 12 \times 8 \right)$$ hours $$ = 96$$ hours
    $$\therefore   P$$'s 1 hours' work $$= \displaystyle\frac { 1 }{ 96 }$$
    $$Q$$ can complete the work in $$\left( 8 \times 10 \right)$$ hours $$ = 80$$ hours
    $$\therefore   Q$$'s 1 hours' work $$= \displaystyle\frac { 1 }{ 80 }$$
    $$\therefore   \left( P + Q \right)$$'s 1 hours' work $$ = \displaystyle\frac { 1 }{ 96 } + \displaystyle\frac { 1 }{ 80 } = \displaystyle\frac { 5+6 }{ 480 } = \displaystyle\frac { 11 }{ 480 }$$
    $$\therefore   \left( P+Q \right)$$ can complete the whole work in $$ \displaystyle\frac { 480 }{ 11 }$$ hours.
    $$\therefore$$  Working 8 hours a day, $$P$$ and $$Q$$ can complete the whole work in $$\left( \displaystyle\frac { 480 }{ 11 } \times \displaystyle\frac { 1 }{ 8 }  \right)$$ days $$ = \displaystyle\frac { 60 }{ 11 }$$ days   $$ = 5 \displaystyle\frac { 5 }{ 11 } $$ days.
  • Question 9
    1 / -0
    The average of eight numbers is $$38.4$$ and the average of seven of them is $$39.2$$. What is the eighth number?
    Solution
    Sum of eight numbers $$= 38.4 \times 8 = 307.2$$
    $$\because $$ Total sum $$=$$ Average $$\times$$ Number of items
    Sum of seven numbers $$=39.2 \times 7 = 274.4$$
    $$\therefore$$ Eight number $$= 307.2 - 274.4 = 32.8$$
  • Question 10
    1 / -0
    The runs scored by Sachin in $$5$$ test matches are $$140$$, $$153$$, $$148$$, $$150$$ and $$154$$ respectively. Find his mean
    Solution
    Runs score by Sachin in $$5$$ test matches: $$140,153,148,150,154$$
    Mean of runs $$= \cfrac{\text{Total runs}}{\text{Number of matches}}$$
    Mean $$= \cfrac{140 + 153 + 148 + 150 + 154}{5}$$
    Mean $$= \cfrac{745}{5}$$
    Mean $$= 149$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now