In $$5$$ days ,($$4$$ men$$+6$$ women) get $$= $$Rs $$1600$$
$$\therefore$$, In $$1$$ day, ($$4$$ men$$+6$$ women) get $$=\dfrac { 1600 }{ 5 } =$$Rs.$$320$$ ...$$(1)$$
In $$1$$ day, number of persons to get Re.$$1=\dfrac { 320 }{ 4men+6women }$$ ....$$(2)$$
Similarly, in second condition,
In $$1$$ day, number of person to get Re.$$1$$
$$=\dfrac { 1740 }{ 6\times \left( 3men+7women \right) } =\dfrac { 290 }{ 3men+7women }$$ ...$$(3)$$
From Eqs.$$(2)$$ and $$(3)$$ We get
$$\dfrac { 320 }{ 3men+7women } =\dfrac { 290 }{ 3men+7women } $$
$$96$$ men$$+224$$women$$=116$$ men$$+174 $$women
$$\Rightarrow 20men=50women $$
$$\Rightarrow \dfrac { man }{ woman } =\dfrac { 5 }{ 2 } $$
$$\therefore, 1$$ woman$$=\dfrac { 2 }{ 5 }$$ man
from Eq.$$(2)$$ in $$1$$ day,
$$\left( 4men+6women \right) =\left( 4men+6\times \dfrac { 2 }{ 5 } m \right) $$ $$=\dfrac { 32 }{ 5 } men\quad get\quad Rs.320$$
In $$1$$ day , $$1$$ man get$$\dfrac { 320\times 5 }{ 32 } =Rs.50$$
$$\therefore$$ In $$1$$ day, $$1$$ woman get $$\dfrac { 50\times 2 }{ 5 } =Rs.20$$
$$\therefore$$, in $$1$$ day $$\left( 7men+6women \right) get\quad 7\times 50+6\times 20=Rs.470$$
Let, required number of days $$=\dfrac { 3760 }{ 470 } =8$$days