Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle \lim_{x\to0}{\displaystyle \frac{x^n - \sin^nx}{x - \sin^nx}}$$ is non-zero finite, then $$n$$ must be equal

  • Question 2
    1 / -0

    $$\displaystyle \lim_{n \rightarrow \infty} \frac{-3n + (-1)^n}{4n - (-1)^n}$$ is equal to

  • Question 3
    1 / -0

    $$\displaystyle \lim_{x\to1}{\displaystyle \frac{1-x^2}{\sin 2\pi x}}$$ is equal to

  • Question 4
    1 / -0

    If $$\displaystyle \lim _{ x\to\infty  }\left\{\displaystyle \frac{x^3 + 1}{x^2 +1} - (ax + b)  \right\}  = 2$$, then

  • Question 5
    1 / -0

    If $$\displaystyle f(x) = \left\{\begin{matrix}x^2+2, & x \geq 2\\ 1-x, & x < 2\end{matrix}\right.$$ and $$g(x) = \left\{\begin{matrix}2x, & x > 1\\ 3-x, & x \leq 1\end{matrix}\right.$$, then the value of $$\displaystyle \lim_{x \rightarrow 1} f(g(x))$$ is ............

  • Question 6
    1 / -0

    $$\displaystyle \lim_{x\to2} \left( \left( \displaystyle \frac{x^3 - 4x}{x^3 - 8} \right)^{-1} - \left( \displaystyle \frac{x + \sqrt{2x}}{x - 2} - \displaystyle \frac{\sqrt {2}}{\sqrt{x} - \sqrt{2}} \right)^{-1} \right)$$ is equal to

  • Question 7
    1 / -0

    $$\displaystyle f(x) = \frac{3x^2 + ax + a + 1}{x^2 + x - 2} $$ and $$\displaystyle \lim_{x \rightarrow - 2} f(x)$$ exists. 

    Then the value of $$(a- 4)$$ is?

  • Question 8
    1 / -0

    $$\displaystyle \lim_{x\to0}\left( x^{-3}\sin{3x} + ax^{-2} + b \right)$$ exists and is equal to 0, then

  • Question 9
    1 / -0

    $$\displaystyle \lim _{ x\to\infty } \left( \frac { x^{ 2 }+2x-1 }{ 2x^2-3x-2 }  \right) ^{\LARGE  \frac { 2x+1 }{ 2x-1 }  }$$ is equal to

  • Question 10
    1 / -0

    $$\displaystyle \lim_{x \rightarrow 1} \frac{x^8 - 2x + 1}{x^4 - 2x +1}$$ equals

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now