Self Studies

Limits and Continuity Test 14

Result Self Studies

Limits and Continuity Test 14
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \lim_{x\to0}{\displaystyle \frac{x^n - \sin^nx}{x - \sin^nx}}$$ is non-zero finite, then $$n$$ must be equal
    Solution
     $$\displaystyle \lim_{x\to0}{\displaystyle \frac{x^n - \sin^nx}{x - \sin^nx}}$$

    $$\mbox{For n = 0,we have }\displaystyle\lim_{x\to0}\displaystyle\frac{1-1}{x-1}=0$$

    $$\mbox{For n = 1,}\displaystyle\lim_{x\to0}\displaystyle\frac{x-\sin x}{x- \sin x}=1\\$$

    $$\mbox{For n = 2,}\displaystyle\lim_{x\to0}\displaystyle\frac{x^2-\sin^2x}{x-\sin^2x}=\displaystyle\lim_{x\to0}\displaystyle\frac{1-\displaystyle\frac{\sin^2x}{x^2}}{\displaystyle\frac{1}{x}-\displaystyle\frac{\sin^2x}{x^2}}.\\$$
    $$\mbox{This does not exist.}\\ $$

    $$\displaystyle { For\ \  n=3, }\lim _{ x\to 0 } \dfrac { x^{ 3 }-\sin ^{ 3 } x }{ x-\sin ^{ 3 } x } =\lim _{ x\to 0 } \dfrac { 1-\dfrac { \sin ^{ 3 } x }{ x^{ 3 } }  }{ \dfrac { 1 }{ x^{ 2 } } -\dfrac { \sin ^{ 3 } x }{ x^{ 3 } }  } $$
    For  $$n = 3$$, also given limit does not exist.
    Hence, $$n = 1$$
  • Question 2
    1 / -0
    $$\displaystyle \lim_{n \rightarrow \infty} \frac{-3n + (-1)^n}{4n - (-1)^n}$$ is equal to
    Solution
    $$\displaystyle \lim_{n \rightarrow \infty} \dfrac{-3n + (-1)^n}{4n - (-1)^n}$$

    $$\displaystyle =\lim_{n \rightarrow \infty} \dfrac{-3 + \dfrac{(-1)^n}{n}}{4 + \dfrac{(-1)^n}{n}} = \dfrac{-3}{4}$$
  • Question 3
    1 / -0
    $$\displaystyle \lim_{x\to1}{\displaystyle \frac{1-x^2}{\sin 2\pi x}}$$ is equal to
    Solution

    $$\displaystyle\lim_{x\to1}\frac{1-x^2}{\sin2\pi
    x}= -\displaystyle \lim_{x\to1}\frac{2\pi(1-x)(1+x)}{-2\pi\sin(2\pi-2\pi x)} $$

    $$=\displaystyle \lim_{x \to 1}\left( \frac{(2\pi-2\pi x}{\sin(2\pi-2\pi x)}\right).\frac{1+x}{-2\pi}=-\frac{1}{\pi}$$

  • Question 4
    1 / -0
    If $$\displaystyle \lim _{ x\to\infty  }\left\{\displaystyle \frac{x^3 + 1}{x^2 +1} - (ax + b)  \right\}  = 2$$, then
    Solution

    $$\displaystyle\lim_{x\to\infty}\left(\frac{x^3+1}{x^2+1}-(ax+b)\right)= 2\\$$

    $$or\displaystyle\lim_{x\to\infty}\frac{x^3(1-a)-bx^2-ax+(1-b)}{x^2+1} = 2\\$$

    As we have finite limit so degree of $$x$$ in the numerator  must be less than equal to the degree of $$x$$ in the denominator.

    So the term containing $$x^3$$ must have coefficient $$0$$ i.e $$(1-a) = 0$$

    Hence $$a =1$$.Divide Numerator and denominator by $$x^3$$ to get the value of $$b$$

    $$ -b = 2$$

    $$\mbox{a = 1,b = -2}\\$$

    Hence, option 'C' is correct.

  • Question 5
    1 / -0
    If $$\displaystyle f(x) = \left\{\begin{matrix}x^2+2, & x \geq 2\\ 1-x, & x < 2\end{matrix}\right.$$ and $$g(x) = \left\{\begin{matrix}2x, & x > 1\\ 3-x, & x \leq 1\end{matrix}\right.$$, then the value of $$\displaystyle \lim_{x \rightarrow 1} f(g(x))$$ is ............
    Solution
    $$\displaystyle \lim_{x \rightarrow 1^+} f(g(x)) = f(g(1^+)) = f((2^+)) = 2^2 + 2 = 6$$
    and $$\displaystyle \lim_{x - 1^-} f(g(x)) = f(g(1^-)) = f(3 - 1^-) =f(2^+) = 2^2 + 2 = 6$$
    Hence, $$\displaystyle \lim_{x \rightarrow 1} f(g(x)) = 6$$.
  • Question 6
    1 / -0
    $$\displaystyle \lim_{x\to2} \left( \left( \displaystyle \frac{x^3 - 4x}{x^3 - 8} \right)^{-1} - \left( \displaystyle \frac{x + \sqrt{2x}}{x - 2} - \displaystyle \frac{\sqrt {2}}{\sqrt{x} - \sqrt{2}} \right)^{-1} \right)$$ is equal to
    Solution
    $$\displaystyle \lim _{ x\rightarrow 2 }{ \left( { \left( \cfrac { x\left( { x }^{ 2 }-4 \right)  }{ { x }^{ 3 }-8 }  \right)  }^{ -1 }-{ \left( \cfrac { \left( \sqrt { x } +\sqrt { 2 }  \right) \sqrt { x }  }{ { \left( \sqrt { x }  \right)  }^{ 2 }-{ \left( \sqrt { 2 }  \right)  }^{ 2 } } -\cfrac { \sqrt { 2 }  }{ \sqrt { x } -\sqrt { 2 }  }  \right)  }^{ -1 } \right)  } $$

    $$=\displaystyle \lim _{ x\rightarrow 2 }{ \left( { \left( \cfrac { x(x-2)(x+2) }{ (x-2)({ x }^{ 2 }+2x+4) }  \right)  }^{ -1 }-{ \left( \cfrac { \sqrt { x }  }{ \sqrt { x } -\sqrt { 2 }  } -\cfrac { \sqrt { 2 }  }{ \sqrt { x } -\sqrt { 2 }  }  \right)  }^{ -1 } \right)  } $$

    $$=\displaystyle \lim _{ x\rightarrow 2 }{ \left( \left( \cfrac { { x }^{ 2 }+2x+4 }{ { x }^{ 2 }+2x }  \right) -1 \right)  } $$

    $$=\displaystyle \lim _{ x\rightarrow 2 }{ \left( 1+\cfrac { 4 }{ { x }^{ 2 }+2x } -1 \right)  } $$

    $$=\cfrac { 4 }{ { 2 }^{ 2 }+2\cdot 2 } =\cfrac { 4 }{ 8 } =\cfrac { 1 }{ 2 } $$
  • Question 7
    1 / -0
    $$\displaystyle f(x) = \frac{3x^2 + ax + a + 1}{x^2 + x - 2} $$ and $$\displaystyle \lim_{x \rightarrow - 2} f(x)$$ exists. 
    Then the value of $$(a- 4)$$ is?
    Solution
    $$\displaystyle f(x) = \frac{3x^2 + ax + a + 1}{(x + 2)(x-1)}$$
    As $$x \rightarrow -2, D^r \rightarrow 0$$. Hence, as $$x  \rightarrow -2, N^r \rightarrow 0$$. Therefore,
    $$\therefore 12 - 2a + a + 1 = 0$$ or $$a = 13$$
    Hence, option 'A' is correct.
  • Question 8
    1 / -0
    $$\displaystyle \lim_{x\to0}\left( x^{-3}\sin{3x} + ax^{-2} + b \right)$$ exists and is equal to 0, then
    Solution
    $$\displaystyle\lim_{x\to\infty}\displaystyle\frac{\sin3x}{x^3}+\displaystyle\frac{a}{x^2}+b

    = \lim_{x\to0}\displaystyle\frac{\sin3x+ax+bx^3}{x^3}$$

    $$=\displaystyle\lim_{x\to0}\displaystyle\frac{3\displaystyle\frac{\sin3x}{3x}+a+bx^2}{x^2}$$

    $$\mbox{For existence, }$$

    $$(3+a)=0 \mbox{ or } a=-3$$

    $$\therefore L=\displaystyle\lim_{x\to0}\displaystyle\frac{\sin3x-3x+bx^3}{x^3}$$

    $$\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{\sin t - t}{t^3}+b = 0 ........ (3x=t ) $$
    The left hand side reduces to $$\dfrac{0}{0}$$ form by substituting the limit
    Then, using L'Hospital's rule
    $$\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{\cos t - 1}{3t^2}+b = 0$$
    Again, applying L'Hospital's rule
    $$\Rightarrow 27\displaystyle\lim_{t\to0}\displaystyle\frac{-\sin t}{6t}+b = 0$$
    $$\Rightarrow -\displaystyle\frac{27}{6}+b=0  \mbox{ or } b=\frac{9}{2}$$
  • Question 9
    1 / -0
    $$\displaystyle \lim _{ x\to\infty } \left( \frac { x^{ 2 }+2x-1 }{ 2x^2-3x-2 }  \right) ^{\LARGE  \frac { 2x+1 }{ 2x-1 }  }$$ is equal to
    Solution

    $$\displaystyle\lim_{x\to\infty}\left(\displaystyle  \frac{x^2+2x-1}{2x^2-3x-2}\right)^{\displaystyle  \frac{2x+1}{2x-1}}\\$$

    $$=\displaystyle\lim_{x\to\infty}\left(\displaystyle \frac{1+\displaystyle  \frac{2}{x}-\displaystyle  \frac{1}{x^2}}{2-\displaystyle  \frac{3}{x}-\displaystyle  \frac{2}{x^3}}\right)^{\displaystyle \frac{2+{{1}/{x}}}{2-{{1}/{x}}}}\\$$

    $$=1/2$$

  • Question 10
    1 / -0
    $$\displaystyle \lim_{x \rightarrow 1} \frac{x^8 - 2x + 1}{x^4 - 2x +1}$$ equals
    Solution
    We have,
    $$\displaystyle \lim_{x \rightarrow 1} \frac{x^8 -2x + 1}{x^4 - 2x + 1}$$

    $$=\displaystyle \lim_{x \rightarrow 1} \frac{(x - 1)(x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1)}{(x - 1) (x^3 + x^2 + x - 1)}$$

    $$= \displaystyle \lim_{x \rightarrow 1} \frac{x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1}{x^3 + x^2 + x - 1} = \frac{6}{2} = 3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now