Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    If $$|x| < 1$$, then $$\displaystyle \lim_{n \rightarrow \infty }\{ (1 + x) (1+x^2)(1 + x^4) ..... (1 + x^{2n}) \}$$ is equal to

  • Question 2
    1 / -0

    The value of $$\displaystyle\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}$$ for $$(a>1)$$ is equal to?

  • Question 3
    1 / -0

    The value of 
    $$\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 \sin^2 x + \sin  x-1}{2 \sin^2 x - 3  \sin  x + 1} $$

  • Question 4
    1 / -0

    Let $$f(x)=\sin x$$, $$g(x)=\left [ x+1 \right ]$$ and $$g(f(x))=h(x)$$, where [.] is the greatest integer function. Then $$h^+\left ( \displaystyle \dfrac{\pi }{2} \right )$$ is

  • Question 5
    1 / -0

    Which one of the following statement is true?

  • Question 6
    1 / -0

    $$\displaystyle \lim_{n\to\infty }\frac{n^{p}\sin ^{2}\left ( n! \right )}{n+1}$$, $$0<p<1$$, is equal to

  • Question 7
    1 / -0

    $$f\left( x \right)=\begin{cases} \sin { x } \qquad ;\qquad x\neq n\pi ,n=0,\pm 1,\pm 2,\pm 3..... \\ 2\qquad \qquad ;\qquad otherwise \end{cases}$$ and $$g\left( x \right) =\begin{cases} { x }^{ 2 }+1\qquad ;\qquad x\neq 0 \\ 4\qquad \qquad ;\qquad x=0 \end{cases}.$$ 

    Then $$\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)\right)} $$ is

  • Question 8
    1 / -0

    Which one of the following statements is true?

  • Question 9
    1 / -0

    If $$\displaystyle \lim_{x\rightarrow 0}(f(x)\:g(x))$$ exists for any functions $$f$$ and $$g$$ then

  • Question 10
    1 / -0

    If $$p\left( x \right) ={ a }_{ 0 }+{ a }_{ 1 }x+...+{ a }_{ n }{ x }^{ n }$$ and $$\left| p\left( x \right)  \right| \le \left| { e }^{ x-1 }-1 \right| $$ for all $$x\ge 0,$$ then $$\left| { a }_{ 1 }+2{ a }_{ 2 }+3{ a }_{ 3 }+...+n{ a }_{ n } \right| $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now