Self Studies

Limits and Continuity Test 15

Result Self Studies

Limits and Continuity Test 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$|x| < 1$$, then $$\displaystyle \lim_{n \rightarrow \infty }\{ (1 + x) (1+x^2)(1 + x^4) ..... (1 + x^{2n}) \}$$ is equal to
    Solution
    We have,
    $$\displaystyle \lim_{n \rightarrow \infty} \{ (1 + x)(1 + x^2)(1 + x^4) .... (1 + ^{2n})\}$$
    $$=\displaystyle \lim_{n \rightarrow \infty} \left \{ \frac{(1 - x)(1 +x)(1 + x^2) .... (1 + x^{2n})}{1 -x} \right\}$$

    $$= \displaystyle \lim_{n \rightarrow \infty} \frac{1 - x^{4n}}{1 - x}$$

    $$= \displaystyle \frac{1 - 0}{1 - x} = \frac{1}{1- x}$$    $$\left [ \because \lim_{n \rightarrow \infty} x^{4n} = 0    for  -1 < x < 1 \right ]$$
    Hence, option 'B' is correct.
  • Question 2
    1 / -0
    The value of $$\displaystyle\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}$$ for $$(a>1)$$ is equal to?
    Solution
    $$\mathrm{L} \displaystyle = \lim_{x\rightarrow\infty}{\frac{\cot^{-1}{(x^{-a}\log_a{x})}}{\sec^{-1}{a^x\log_x{a}}}}$$

    $$\displaystyle = \lim_{x\rightarrow\infty}{\frac{\cot^{-1}{\displaystyle \frac{\log{x}}{\log a. x^a}}}{\sec^{-1}{\displaystyle \frac{a^x\log a}{\log x}}}}=\lim_{x\rightarrow\infty}{\frac{\cot^{-1}{\displaystyle \frac{1}{a\log a. x^a}}}{\sec^{-1}{\displaystyle \frac{a^x\log^2 a. x}{1}}}}=\frac{\cot^{-1}0}{\sec^{-1} \infty}=\frac{\pi/2}{\pi/2}=1$$
    Note: L-Hospital's rule has been used in step two in both numerator and denominator alone.
  • Question 3
    1 / -0
    The value of 
    $$\displaystyle \lim_{x \rightarrow \pi/6} \frac{2 \sin^2 x + \sin  x-1}{2 \sin^2 x - 3  \sin  x + 1} $$
    Solution
    We have
    $$\displaystyle \lim_{x \rightarrow \pi/6} \frac{2  sin^2 x + sin  x -1}{2  sin^2  x-3  sin  x  + 1}$$

    $$\displaystyle  = \lim_{x \rightarrow \pi/6} \frac{(2  sin  x - 1)(sin  x + 1)}{(2  sin  x - 1)(sin  x - 1)}$$

    $$\displaystyle  = \lim_{x \rightarrow \pi/6} \frac{sin  x + 1}{sin  x - 1} = - 3$$
  • Question 4
    1 / -0
    Let $$f(x)=\sin x$$, $$g(x)=\left [ x+1 \right ]$$ and $$g(f(x))=h(x)$$, where [.] is the greatest integer function. Then $$h^+\left ( \displaystyle \dfrac{\pi }{2} \right )$$ is
    Solution
    $$f(x) =\sin(x)$$ and $$g(x) = [1+x]$$

    $$\Rightarrow g(f(x)) = [1+\sin x]=h(x)$$

    $$h^{+}\left( \cfrac{\pi}{2}\right) =[1+\sin(\pi/2)]= 1$$
  • Question 5
    1 / -0
    Which one of the following statement is true?
    Solution
    The statements can be proved false by giving counter examples

    (1)  If $$\displaystyle \lim_{x\to c}f(x).g(x)$$ and $$\displaystyle \lim_{x\to c}f(x)$$ exist, then $$\displaystyle \lim_{x\to c}g(x)$$ exists
    Let $$g(x) = 1/x $$ and $$f(x) = 2x$$, with $$c = 0$$, 
    then $$\displaystyle \lim_{x\to c}f(x).g(x) =2 $$ 
    $$\displaystyle \lim_{x\to c}f(x) = 0 $$ ,but   $$\displaystyle \lim_{x\to c}g(x)$$  does not exist

    (2) Same example as (1)
    (4) Let $$g(x) =\dfrac{ x+ 1}{x} $$ and $$f(x) = \dfrac{x-1}{x} $$, with $$c = 0$$,
    then $$\displaystyle \lim_{x\to c}[f(x)+g(x)] =2$$
    • but  $$\displaystyle \lim_{x\to c}f(x) \ and \ g(x)$$ do not exist
  • Question 6
    1 / -0
    $$\displaystyle \lim_{n\to\infty }\frac{n^{p}\sin ^{2}\left ( n! \right )}{n+1}$$, $$0<p<1$$, is equal to
    Solution
    We have,
    $$\displaystyle \lim_{n \rightarrow \infty} \dfrac{n^p sin^2 (n!)}{n + 1} = \lim_{n \rightarrow \infty} \dfrac{sin^2 (n!)}{1 + \dfrac{1}{n}} \times n^{p - 1}$$
    $$\Rightarrow \displaystyle \lim_{n \rightarrow \infty} \dfrac{n^p  sin^2 (n!)}{n + 1} = \lim_{n \rightarrow \infty} \dfrac{sin^2 (n!)}{n^{1 - p}} \times \dfrac{1}{1 + \dfrac{1}{n}}$$
    $$\displaystyle \Rightarrow \lim_{n \rightarrow \infty} \dfrac{n^p sin^2 (n!)}{n+1} = \dfrac{\text{An oscillating number}}{\infty} \times 1 = 0 \times 1 = 0$$.
    Hence, option 'A' is correct.
  • Question 7
    1 / -0
    $$f\left( x \right)=\begin{cases} \sin { x } \qquad ;\qquad x\neq n\pi ,n=0,\pm 1,\pm 2,\pm 3..... \\ 2\qquad \qquad ;\qquad otherwise \end{cases}$$ and $$g\left( x \right) =\begin{cases} { x }^{ 2 }+1\qquad ;\qquad x\neq 0 \\ 4\qquad \qquad ;\qquad x=0 \end{cases}.$$ 
    Then $$\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)\right)} $$ is
    Solution
    $$\lim _{ x\rightarrow 0 }{ g\left( f\left( x \right)  \right)  } =g\left( f\left( 0 \right)  \right) $$
    $$=g(2)={ 2 }^{ 2 }+1=5$$
  • Question 8
    1 / -0
    Which one of the following statements is true?
    Solution
    For  option  A and B,  take  $$f(x)=x$$ and $$g(x)=\dfrac { 1 }{ x }$$.
    Limit of $$g(x)$$  doesn't  exist  at  $$x=0$$, but for $$\displaystyle \lim _{ x\to 0} f(x).g(x)$$ and $$f(x)=x$$ limit  exists.

    For option C,
    Lets assume $$h(x) = f(x)+g(x)$$,
    Take limit on both sides as $$x\to c$$
    $$\lim_{x\to c}h(x) = \lim_{x\to c}(f(x)+g(x))$$
    And it is given that $$\lim_{x\to c}f(x)$$ exists.
    Using sum law of limits:
    If $$\lim_{x\to c}F(x)$$ and $$\lim_{x\to c}G(x)$$ exists, then $$\lim_{x\to c}(F(x)\pm G(x))$$ also exists.

    $$\therefore \lim_{x\to c}(h(x) - f(x)) = \lim_{x\to c}(f(x) + g(x) - f(x)) = \lim_{x\to c}g(x)$$ exists.

    For  option  D,  take  $$f(x)=-\dfrac{cosx}{x^2}$$ and $$g(x)=\dfrac { 1 }{ x^2 }$$.
    Limit of $$g(x)$$ and $$f(x)=-\dfrac{cosx}{x^2}$$  doesn't  exist  at  $$x=0$$, but for $$\displaystyle \lim _{ x\to 0} f(x)+g(x)$$ limit  exists.

    Hence option C.
  • Question 9
    1 / -0
    If $$\displaystyle \lim_{x\rightarrow 0}(f(x)\:g(x))$$ exists for any functions $$f$$ and $$g$$ then
    Solution
    Take $$\displaystyle f(x) = \begin{cases} 1 & x> 0  \\ -1 & x< 0  \end{cases}$$ and $$\displaystyle g(x) = \begin{cases} 1 & x> 0  \\ -1 & x< 0  \end{cases}$$. Then $$f(x)\:g(x)=1$$ for $$x\neq 0$$. Hence $$\displaystyle \displaystyle \lim_{x\rightarrow 0}f(x)$$ and $$\displaystyle \lim_{x\rightarrow 0}g(x)$$ does not exist but $$\displaystyle\lim_{x\rightarrow 0}f(x)\:g(x)=1$$
    Hence, option 'D' is correct.
  • Question 10
    1 / -0
    If $$p\left( x \right) ={ a }_{ 0 }+{ a }_{ 1 }x+...+{ a }_{ n }{ x }^{ n }$$ and $$\left| p\left( x \right)  \right| \le \left| { e }^{ x-1 }-1 \right| $$ for all $$x\ge 0,$$ then $$\left| { a }_{ 1 }+2{ a }_{ 2 }+3{ a }_{ 3 }+...+n{ a }_{ n } \right| $$
    Solution
    We have, $$\displaystyle p'\left( 1 \right) =\lim _{ h\rightarrow 0 }{ \frac { p\left( 1+h \right) -p\left( 1 \right)  }{ h }  } \Rightarrow \left| p'\left( 1 \right)  \right| =\left| \lim _{ h\rightarrow 0 }{ \frac { p\left( 1+h \right) -p\left( 1 \right)  }{ h }  }  \right| $$

    $$\displaystyle =\lim _{ h\rightarrow 0 }{ \frac { \left| p\left( 1+h \right) -p\left( 1 \right)  \right|  }{ \left| h \right|  }  } \le \lim _{ h\rightarrow 0 }{ \frac { \left| p\left( 1+h \right) +p\left( 1 \right)  \right|  }{ \left| h \right|  }  } $$ ........(1)

    Now, $$\left| p\left( x \right)  \right| \le \left| { e }^{ x-1 }-1 \right| \Rightarrow \left| p\left( 1-h \right)  \right| \le \left| { e }^{ h }-1 \right| $$ and $$\left| p\left( 1 \right)  \right| \le 0\Rightarrow p\left( 1 \right) =0$$

    Hence, $$\displaystyle \left| p'\left( 1 \right)  \right| \le \lim _{ h\rightarrow 0 }{ \frac { \left| { e }^{ h }-1 \right|  }{ \left| h \right|  }  } =1$$

    $$\displaystyle \Rightarrow \left| p'\left( 1 \right)  \right| \le 1\Rightarrow \left| { a }_{ 1 }+2{ a }_{ 2 }+3{ a }_{ 3 }+...+n{ a }_{ n } \right| \le 1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now