Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    The value of the constant $$\alpha$$ and $$\beta$$ such that $$\displaystyle \lim_{x\rightarrow \infty}\left(\displaystyle\frac{x^2+1}{x+1}-\alpha x-\beta\right)=0$$ are respectively.

  • Question 2
    1 / -0

    The function represented by  the following graph is.

  • Question 3
    1 / -0

    If [x] denotes the greatest integer not exceeding $$x$$ and if the function $$f$$ defined by $$f(x)= \begin{cases}\dfrac{a+2\cos\,x}{x^2}&(x < 0) \\ b\,\tan \dfrac{\pi}{[x+4]}&(x \ge 0) \end{cases}$$ is continuous at $$x=0$$, then the order pair (a, b) =

  • Question 4
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\dfrac {1 - \cos x}{x^{2}}$$ is ____

  • Question 5
    1 / -0

    The limit of $$\left[\frac{1}{x^2}+\frac{(2013)^x}{e^x-1}-\frac{1}{e^x-1}\right]$$ as $$x\rightarrow 0$$

  • Question 6
    1 / -0

    If the function $$f(x)$$ satisfies $$\displaystyle \lim_{x\rightarrow 1}\frac{f(x)-2}{x^2-1}=\pi$$, then $$\displaystyle \lim_{x\rightarrow 1}f(x)=$$

  • Question 7
    1 / -0

    $$\displaystyle \lim_{x\rightarrow 0}\frac{log_e(1+x)}{3^x-1}=$$ ____.

  • Question 8
    1 / -0

    The limit of $$\displaystyle \sum_{n=1}^{1000}(-1)^nx^n$$ as $$x\rightarrow \infty$$

  • Question 9
    1 / -0

    The limit of $$\left\{\frac{1}{x}\sqrt{1-x}-\sqrt{1+\frac{1}{x^2}}\right\}$$ as $$x\rightarrow 0$$

  • Question 10
    1 / -0

    $$\displaystyle \lim_{x\rightarrow \pi/4} \dfrac {\tan x - 1}{\cos 2x}$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now