Self Studies

Limits and Continuity Test 18

Result Self Studies

Limits and Continuity Test 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle \lim _{ n\rightarrow \infty  }{ \cfrac { n.{ 3 }^{ n } }{ n{ \left( x-2 \right)  }^{ n }+n.{ 3 }^{ n+1 }-{ 3 }^{ n } }  } =\cfrac { 1 }{ 3 } $$, then the range of $$x$$ is (When $$n\in N$$)
    Solution
    $$\displaystyle\lim_{n\rightarrow \infty}\dfrac{n.3^n}{n(x-2)^n+n3^{n+1}-3^n}=\displaystyle\lim_{n\rightarrow \infty}\dfrac{1}{\left(\dfrac{x-2}{3}\right)^n+3-\dfrac{1}{n}}=\dfrac{1}{3}$$
    We know $$\displaystyle\lim_{n\rightarrow \infty}\dfrac{1}{n}=0$$
    then we want $$\dfrac{|x-2|}{3} < 1$$  $$\rightarrow \because$$ if $$a < 1, a^n=0$$ for $$n\rightarrow \infty$$
    $$x < 5$$
    $$x > -1$$
    $$\therefore (-1, 5)$$.

  • Question 2
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 3} = \dfrac {\sqrt {x} -\sqrt {3}}{\sqrt {x^{2} - 9}}$$ is equal to
    Solution
    The value of $$\displaystyle \lim_{x\rightarrow 3} = \dfrac {\sqrt {x} -\sqrt {3}}{\sqrt {x^{2} - 9}} $$ is
    $$= \displaystyle \lim_{x\rightarrow 3} \dfrac {\sqrt {x} - \sqrt {3}}{\sqrt {x - 3}\sqrt {x} + 3} \times \dfrac {\sqrt {x} + \sqrt {3}}{\sqrt {x} + \sqrt {3}}$$
    $$= \displaystyle \lim_{x\rightarrow 3} \dfrac {x - 3}{\sqrt {x - 3} \sqrt {x + 3}}\times \dfrac {1}{\sqrt {x} + \sqrt {3}}$$
    $$= \displaystyle \lim_{x\rightarrow 3} \dfrac {\sqrt {x - 3}}{\sqrt {x + 3}} \times \dfrac {1}{\sqrt {x} + \sqrt {3}} = 0$$
  • Question 3
    1 / -0
    What is $$\displaystyle \lim_{x \rightarrow 0 }  x^2 \sin \left(\frac{1}{x}\right)$$ equal to ? 
    Solution
    $$\displaystyle \lim _{ x\rightarrow 0 }{ { x }^{ 2 }\sin { \left( \cfrac { 1 }{ x }  \right)  }  } $$
    $$={ 0 }^{ 2 }\times \sin { \left( \cfrac { 1 }{ 0 }  \right)  } \quad \left[ -1\le \sin { \left( \cfrac { 1 }{ x }  \right)  } \le 1 \right] $$
    $$=0$$
  • Question 4
    1 / -0
    If $$f\left( x \right) =\begin{vmatrix} \sin { x }  & \cos { x }  & \tan { x }  \\ { x }^{ 3 } & { x }^{ 2 } & x \\ 2x & 1 & 1 \end{vmatrix}$$, then $$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { f\left( x \right)  }{ { x }^{ 2 } }  } $$ is
    Solution
    $$f(x)=\begin{vmatrix} sinx & cosx & tanx \\ { x }^{ 3 } & { x }^{ 2 } & x \\ 2x & 1 & 1 \end{vmatrix}\\ \Longrightarrow f(x)=sinx({ x }^{ 2 }-x)-cosx({ x }^{ 3 }-2{ x }^{ 2 })+tanx({ x }^{ 3 }-2{ x }^{ 3 })\\ \Longrightarrow f(x)={ x }^{ 2 }sinx-xsinx-{ x }^{ 3 }cosx+2{ x }^{ 2 }cosx-{ x }^{ 3 }tanx\\ \Longrightarrow \dfrac { f(x) }{ { x }^{ 2 } } =sinx-xcosx+2cosx-xtanx-\dfrac { sinx }{ x } \\ \Longrightarrow \underset { x\longrightarrow 0 }{ lim } \dfrac { f(x) }{ { x }^{ 2 } } =\underset { x\longrightarrow 0 }{ lim } sinx-\underset { x\longrightarrow 0 }{ lim } xcosx+\underset { x\longrightarrow 0 }{ lim } 2cosx-\underset { x\longrightarrow 0 }{ lim } xtanx-\underset { x\longrightarrow 0 }{ lim } \dfrac { sinx }{ x } \\ \Longrightarrow \underset { x\longrightarrow 0 }{ lim } \dfrac { f(x) }{ { x }^{ 2 } } =0-0+2-0-1\\ \Longrightarrow \underset { x\longrightarrow 0 }{ lim } \dfrac { f(x) }{ { x }^{ 2 } } =1\\ \\ $$
  • Question 5
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow \pi /6 }{ \cfrac { 2\sin ^{ 2 }{ x } +\sin { x } -1 }{ 2\sin ^{ 2 }{ x } -3\sin { x } -1 }  } $$ is
    Solution

    $$L=\lim _{ x\rightarrow { \pi  }/{ 6 } }{ \dfrac { 2\sin ^{ 2 }{ x } +\sin { x } -1 }{ 2\sin ^{ 2 }{ x } -3\sin { x } -1 }  } \\ L=\dfrac { 2\sin ^{ 2 }{ \left( \dfrac { \pi  }{ 6 }  \right)  } +\sin { \left( \dfrac { \pi  }{ 6 }  \right)  } -1 }{ 2\sin ^{ 2 }{ \left( \dfrac { \pi  }{ 6 }  \right)  } -3\sin { \left( \dfrac { \pi  }{ 6 }  \right)  } -1 } \\ L=\dfrac { 2.\dfrac { 1 }{ 4 } +\dfrac { 1 }{ 2 } -1 }{ 2.\dfrac { 1 }{ 4 } -3.\dfrac { 1 }{ 2 } -1 } =\dfrac { 0 }{ -2 }= 0 $$

    So option $$D$$ is correct

  • Question 6
    1 / -0
    Which one of the following statements is correct?
    Solution
    $$(fog) (x) = [\sin x]$$
    $$\displaystyle \lim_{x\to 0^+} [\sin x]=0$$ and $$\displaystyle \lim_{x\to 0^-} [\sin x]=-1$$. Hence, $$\displaystyle \lim_{x\to 0} fog(x)$$ does not exist.
    Now, $$gof(x)=\sin [x]$$

    $$\displaystyle \lim_{x\to 0^+} \sin [x]=0$$ and $$\displaystyle \lim_{x\to 0^-} \sin [x]=\sin (-1)$$. Hence, $$\displaystyle \lim_{x\to 0} gof(x)$$ does not exist.

    But, $$\displaystyle \lim_{x\to 0^+} fog(x)=\displaystyle \lim_{x\to 0^-} gof(x)$$
  • Question 7
    1 / -0
    $$\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}(\pi - 2x^{\cos x})$$ is equal to :
    Solution
    $$\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}(\pi - 2x^{\cos x})$$ 
    $$=\pi - 2\left(\dfrac{\pi}{2}\right)^{\cos \frac{\pi}{2}}$$
    $$=\pi-2\left(\dfrac{\pi}{2}\right)^{0}$$
    $$=\pi-2$$
  • Question 8
    1 / -0
    $$\displaystyle\lim_{x\rightarrow\frac{\pi}{6}}\frac{\sin\left(x-\displaystyle\frac{\pi}{6}\right)}{\sqrt{3-2cos x}}$$ is equal to :
    Solution
    $$ \lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \dfrac { \sin { (x-\cfrac { \pi  }{ 6 }  } ) }{ \sqrt { 3-2\cos { x }  }  }  } $$
    at  $$\cfrac { \pi }{ 6 }$$  we get the numerator as $$\sin { (x-\cfrac { \pi  }{ 6 } ) } = 0 $$ 
    and the denominator as $$  \sqrt { 3-2\cos { x }  } =\sqrt { 3-\sqrt { 3 }  } $$   
    So,it is not an indeterminant form as we have $$\dfrac{0}{\sqrt{3 - \sqrt{3}} }$$
    Hence the answer will be zero. 
  • Question 9
    1 / -0
    If $$\underset{x\to 0}{\lim}\dfrac{x^a\sin^b x}{\sin(x^c)}, a, b, c, \in R \sim \{0\}$$ exists and has non-zero value, then 
    Solution
    Given, limit is $$\lim_{x\rightarrow 0}\dfrac {x^a\sin^bx}{\sin (x^c)}$$
    $$\underset{x\to 0}{\lim} x^a.\dfrac{\left(\dfrac{\sin x}{x}\right)^b}{\left(\dfrac{\sin(x^c)}{x^c}\right)}.\dfrac{x^b}{x^c}$$
    $$=\underset{x\to 0}{\lim} x^{a+b-c} \dfrac{\left(\dfrac{\sin x}{x}\right)^b}{\left(\dfrac{\sin(x^c)}{x^c}\right)}$$
    The above limit non-zero valu only when
    $$a+b-c = 0$$
  • Question 10
    1 / -0
    Determine the value of k for which the following function is continuous at $$x=3$$.
    $$f(x)=\dfrac{x^2-9}{x-3}, x \neq 3$$

    $$f(x)=k, x=3$$
    Solution
    Since f(x) is continuous at $$x=3$$.

    Therefore,

    $$\displaystyle\lim_{x\rightarrow 3} f(x) =f(3)$$

    $$\displaystyle\lim_{x\rightarrow 3} f(x)=k$$

    $$\displaystyle\lim_{x\rightarrow 3} \dfrac{x^2-9}{x-3}=k$$

    $$\displaystyle\lim_{x\rightarrow 3} \dfrac{(x+3)(x-3)}{x-3}=k$$

    $$\displaystyle\lim_{x\rightarrow 3} (x+3)=k$$

    $$k=6$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now