Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    $$\lim _{ x\rightarrow 3 }{ \left( { x }^{ 3 }-4 \right) /\left( x+1 \right)  } =$$

  • Question 2
    1 / -0

    Evaluate the limit:
    $$\displaystyle \lim_{x \to 0} \left( \frac{x- \sin x}{x}\right) \sin \left(\frac{1}{x} \right)$$

  • Question 3
    1 / -0

    $$\lim _{ x\rightarrow { 0 }^{ + } }{ \left( { \left( x\cos { x }  \right)  }^{ x }+{ \left( \cos { x }  \right)  }^{ \frac { 1 }{ \ln { x }  }  }+{ \left( x\sin { x }  \right)  }^{ x } \right)  } $$ is equal to

  • Question 4
    1 / -0

    If the function $$f(x)=\dfrac{e^{x^{2}}-\cos x}{x^{2}}$$ for $$x \neq 0$$ continuous at $$x=0$$ then $$f(0)=$$

  • Question 5
    1 / -0

    The function $$f : R /{0} \rightarrow R$$ given by $$f(x) =
    \dfrac{1}{x} - \dfrac{2}{e^{2x} -1}$$ can be made continuous at $$x=0$$ by
    defining $$f(0)$$ as 

  • Question 6
    1 / -0

    $$\dfrac{\displaystyle \lim_{h \rightarrow 0}(h+1)^2}{\displaystyle \lim_{h\rightarrow 0}(1+h)^{2/h}}$$ is equal to

  • Question 7
    1 / -0

    $$\mathop {\lim }\limits_{x \to 0} {{(1 - \cos 2x)(3 + \cos x)} \over {x\tan 4x}}$$ is equal to

  • Question 8
    1 / -0

    Let $${P_n} = \prod\limits_{k = 2}^n {\left( {1 - {1 \over {{}^{{}^{k + 1}}{C_2}}}} \right)} .$$ If $$\mathop {\lim }\limits_{x \to \infty } {P_n}$$ can be expressed as lowest rational in the form $$\dfrac { a }{ b } $$ , then value of $$(a+b)$$ is __________.

  • Question 9
    1 / -0

    $$\lim\limits_{x\to 0}\dfrac{e^{\sin x}-1}{x}=$$

  • Question 10
    1 / -0

    $$\mathop {\lim}\limits_{x \to \frac{\pi}{2}} \tan x = $$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now