Self Studies

Limits and Continuity Test 19

Result Self Studies

Limits and Continuity Test 19
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\lim _{ x\rightarrow 3 }{ \left( { x }^{ 3 }-4 \right) /\left( x+1 \right)  } =$$
  • Question 2
    1 / -0
    Evaluate the limit:
    $$\displaystyle \lim_{x \to 0} \left( \frac{x- \sin x}{x}\right) \sin \left(\frac{1}{x} \right)$$
    Solution
    $$\lim _{ x\rightarrow 0 }{ (\cfrac { x-\sin { x }  }{ x } ) } \sin { (\cfrac { 1 }{ x } ) } \\ \lim _{ x\rightarrow 0 }{ (\cfrac { x-\sin { x }  }{ x } ) } \times \lim _{ x\rightarrow 0 }{ \sin { (\cfrac { 1 }{ x } ) }  } \\ (1-\cos { x } )\times (Value\quad between\quad -1\quad and\quad 1)\\ 0\times Value\quad between\quad (-1\& 1)\\ 0$$
  • Question 3
    1 / -0
    $$\lim _{ x\rightarrow { 0 }^{ + } }{ \left( { \left( x\cos { x }  \right)  }^{ x }+{ \left( \cos { x }  \right)  }^{ \frac { 1 }{ \ln { x }  }  }+{ \left( x\sin { x }  \right)  }^{ x } \right)  } $$ is equal to
    Solution
    $$\lim_{x\rightarrow 0^+}(x\cos x)^x$$

    $$\lim_{x\rightarrow 0^+} x^x.\cos ^x x$$

    $$\lim_{x\rightarrow 0^+} e^{x\ln x}.\cos ^x x$$

    $$ 1\times 1$$

    $$1$$

    $$\therefore \lim_{x\rightarrow 0^+}(x\cos x)^x=1$$
    ------------------------------------------------------

    $$\lim_{x\rightarrow 0^+}(x\sin x)^x$$

    $$\lim_{x\rightarrow 0^+} x^x.\sin ^x x$$

    $$\lim_{x\rightarrow 0^+} e^{x\ln x}.\sin ^x x$$

    $$ 1\times 1$$

    $$1$$

    $$\therefore \lim_{x\rightarrow 0^+}(x\sin x)^x=1$$

    ---------------------------------------------------------

    $$\lim_{x\rightarrow 0^+} (\csc x)^{\frac{1}{\ln x}}$$

    $$\lim_{x\rightarrow 0^+} (\dfrac{1}{\sin x})^{\frac{1}{\ln x}}$$

    $$y= \lim_{x\rightarrow 0^+} (\dfrac{1}{\sin x})^{\frac{1}{\ln x}}$$

    $$\ln y =\lim_{x\rightarrow 0^+} \dfrac{1}{\ln x}(-\ln (\sin x))$$

    $$\ln y =\lim_{x\rightarrow 0^+} \dfrac{1}{\frac{1}{x}}\left ( -\frac{\cos x}{\sin x} \right )$$

    $$\ln y =\lim_{x\rightarrow 0^+}(-\cos x)$$

    $$\ln y = -1$$

    $$y=e^{-1}$$

    $$y=\dfrac{1}{e}$$

    $$\therefore \lim_{x\rightarrow 0^+} (\csc x)^{\frac{1}{\ln x}}=\dfrac{1}{e}$$
      
    ------------------------------------------------------------------------------------
    ------------------------------------------------------------------------------------

    $$\lim_{x\rightarrow 0^+} ((x\cos x)^x+(\csc x)^{\frac{1}{\ln x}}+(x\sin x)^x)$$

    $$=1+\dfrac{1}{e}+1$$

    $$=2+\dfrac{1}{e}$$
  • Question 4
    1 / -0
    If the function $$f(x)=\dfrac{e^{x^{2}}-\cos x}{x^{2}}$$ for $$x \neq 0$$ continuous at $$x=0$$ then $$f(0)=$$
    Solution
    Here , function is continuous ,

    So, left limit and right limit boh are equal and equals to the value of  $$f(x)$$ at $$x=0$$

    Therefore

    $$\displaystyle \lim_{x\rightarrow0} f(x)=\lim_{x\rightarrow0} \dfrac{e^{x^2}-cosx}{x^2}$$

    Solving limit by derivative approach,

    =>  $$\displaystyle \lim_{x\rightarrow0} f(x)=\lim_{x\rightarrow0} \dfrac{e^{x^2}.2x+sinx}{2x}$$


    =>   $$\displaystyle \lim_{x\rightarrow0} f(x)=\lim_{x\rightarrow0} \dfrac{2e^{x^2}+e^{x^2}.x^2+cosx}{2x}$$

    Putting $$x=0$$, we get

    =>   $$f(0)=\dfrac{2+0+1}{2}=\dfrac{3}{2}$$
  • Question 5
    1 / -0

    The function $$f : R /{0} \rightarrow R$$ given by $$f(x) =
    \dfrac{1}{x} - \dfrac{2}{e^{2x} -1}$$ can be made continuous at $$x=0$$ by
    defining $$f(0)$$ as 

    Solution
    Given $$f(x)=\dfrac{1}{x}-\dfrac{2}{e^{2x}-1}$$

    For $$f(x)$$ to be continuous at $$x=0$$ , its limit should exists at $$x=0$$ and must be finite.

    Hence
    $$f(0)=\lim\limits_{x\to0}\dfrac{e^{2x}-1-2x}{x(e^{2x}-1)}$$

    $$=\lim\limits_{x\to0}\dfrac{1+2x+\frac{4x^2}{2!}+\frac{8x^3}{3!}.....-1-2x}{x+2x^2+\frac{4x^3}{2!}.....-x}=\dfrac{\frac{4x^2}{2!}}{2x^2}=1$$......[neglecting higher power of $$x$$]  
  • Question 6
    1 / -0
    $$\dfrac{\displaystyle \lim_{h \rightarrow 0}(h+1)^2}{\displaystyle \lim_{h\rightarrow 0}(1+h)^{2/h}}$$ is equal to
  • Question 7
    1 / -0
    $$\mathop {\lim }\limits_{x \to 0} {{(1 - \cos 2x)(3 + \cos x)} \over {x\tan 4x}}$$ is equal to

    Solution
    $$\lim _{ x\rightarrow 0 }{ \cfrac { (1-\cos { 2x } )(3+\cos { x } ) }{ x\tan { 4x }  }  } \\ \Rightarrow \cfrac { (1-1+2\sin { ^{ 2 }{ x } } )(3+\cos { x } ) }{ x\times 4x } \times (\cfrac { 4x }{ \tan { 4x }  } )\\ \Rightarrow \cfrac { 2\sin { ^{ 2 }{ x } }  }{ 4{ x }^{ 2 } } \times (3+\cos { x } )\times 1\\ \Rightarrow \cfrac { 1 }{ 2 } { (\cfrac { \sin { x }  }{ x } ) }^{ 2 }\times (3+\cos { x } )\times 1\\ \Rightarrow \cfrac { 1 }{ 2 } \times 4\times 1=2$$
  • Question 8
    1 / -0
    Let $${P_n} = \prod\limits_{k = 2}^n {\left( {1 - {1 \over {{}^{{}^{k + 1}}{C_2}}}} \right)} .$$ If $$\mathop {\lim }\limits_{x \to \infty } {P_n}$$ can be expressed as lowest rational in the form $$\dfrac { a }{ b } $$ , then value of $$(a+b)$$ is __________.
    Solution

  • Question 9
    1 / -0
    $$\lim\limits_{x\to 0}\dfrac{e^{\sin x}-1}{x}=$$
    Solution
    Now,
    $$\lim\limits_{x\to 0}\dfrac{e^{\sin x}-1}{x}$$
    $$=\lim\limits_{x\to 0}\dfrac{\dfrac{e^{\sin x}-1}{\sin x}}{\dfrac{x}{\sin x}}$$
    $$=\dfrac{\lim\limits_{\sin x\to 0}\dfrac{e^{\sin x}-1}{\sin x}}{\dfrac{1}{\lim\limits_{x\to 0}\dfrac{\sin x}{ x}}}$$
    $$=\dfrac{1}{1}$$
    $$=1$$.
  • Question 10
    1 / -0
    $$\mathop {\lim}\limits_{x \to \frac{\pi}{2}} \tan x = $$
    Solution
    $$L=\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}\tan x$$
    $$\Rightarrow$$  $$L=\tan\dfrac{\pi}{2}$$        [ Applying limit ]
    We know that value of $$\tan\dfrac{\pi}{2}$$ is does not exist.
    $$\therefore$$  $$\displaystyle\lim_{x\rightarrow \frac{\pi}{2}}\tan x=$$ does not exist

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now