$$\lim_{x\rightarrow 0^+}(x\cos x)^x$$
$$\lim_{x\rightarrow 0^+} x^x.\cos ^x x$$
$$\lim_{x\rightarrow 0^+} e^{x\ln x}.\cos ^x x$$
$$ 1\times 1$$
$$1$$
$$\therefore \lim_{x\rightarrow 0^+}(x\cos x)^x=1$$
------------------------------------------------------
$$\lim_{x\rightarrow 0^+}(x\sin x)^x$$
$$\lim_{x\rightarrow 0^+} x^x.\sin ^x x$$
$$\lim_{x\rightarrow 0^+} e^{x\ln x}.\sin ^x x$$
$$ 1\times 1$$
$$1$$
$$\therefore \lim_{x\rightarrow 0^+}(x\sin x)^x=1$$
---------------------------------------------------------
$$\lim_{x\rightarrow 0^+} (\csc x)^{\frac{1}{\ln x}}$$
$$\lim_{x\rightarrow 0^+} (\dfrac{1}{\sin x})^{\frac{1}{\ln x}}$$
$$y= \lim_{x\rightarrow 0^+} (\dfrac{1}{\sin x})^{\frac{1}{\ln x}}$$
$$\ln y =\lim_{x\rightarrow 0^+} \dfrac{1}{\ln x}(-\ln (\sin x))$$
$$\ln y =\lim_{x\rightarrow 0^+} \dfrac{1}{\frac{1}{x}}\left ( -\frac{\cos x}{\sin x} \right )$$
$$\ln y =\lim_{x\rightarrow 0^+}(-\cos x)$$
$$\ln y = -1$$
$$y=e^{-1}$$
$$y=\dfrac{1}{e}$$
$$\therefore \lim_{x\rightarrow 0^+} (\csc x)^{\frac{1}{\ln x}}=\dfrac{1}{e}$$
------------------------------------------------------------------------------------
------------------------------------------------------------------------------------
$$\lim_{x\rightarrow 0^+} ((x\cos x)^x+(\csc x)^{\frac{1}{\ln x}}+(x\sin x)^x)$$
$$=1+\dfrac{1}{e}+1$$
$$=2+\dfrac{1}{e}$$