Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    Suppose the function $$f(x)-f(2x)$$ has the derivative $$5$$ at $$x=1$$ and derivative $$7$$ at $$x=2$$. The derivative of the function $$f(x)-f(4x)$$ at $$x=1$$, has the value equal to?

  • Question 2
    1 / -0

    $$\lim _{ x\rightarrow 0 }{ \log _{ \left( \tan ^{ 2 }{ x }  \right)  }{ \left( \tan ^{ 2 }{ 2x }  \right) = }  }$$

  • Question 3
    1 / -0

    $$\displaystyle \lim_{n \rightarrow \infty} {^{n}C_{c}}\left(\dfrac {m}{n}\right)^{x}\left(1-\dfrac {m}{n}\right)^{n-x}$$ equal to

  • Question 4
    1 / -0

    If [.] denotes, GIF , then $$\underset{x \rightarrow 0}{lt} \left( \left[\dfrac{2018 sin^{-1} x}{x}\right] + \left[\dfrac{2020x}{tan^{-1} x}\right]\right)$$ = 

  • Question 5
    1 / -0

    The value of $$\lim\limits_{x\to 0}\dfrac{1-\cos x}{x^2}$$

  • Question 6
    1 / -0

    $$\displaystyle\mathop {\lim }\limits_{\ x \to 0} \cos \frac{x}{2}\cos \frac{x}{{{2^2}}}\cos \frac{x}{{{2^3}}}......\cos \frac{x}{{{2^n}}}$$ is equal to 

  • Question 7
    1 / -0

    $$\underset{h \rightarrow 0}{lim} \dfrac{\sqrt{x + h} -\sqrt{x}}{h}$$ is equal to 

  • Question 8
    1 / -0

    Evaluate:

    $$\lim\limits_{x\to 0}(1+ax)^{\dfrac{1}{x}}$$

  • Question 9
    1 / -0

    $$\lim\limits_{x\to 0}\dfrac{1-\cos x }{x^2}=$$

  • Question 10
    1 / -0

    $$\underset{x \to 0}{\lim}\dfrac{\sin [ \cos x]}{1+[\cos x]}$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now