$$\displaystyle\lim_{x\rightarrow \infty}\left(\cos\dfrac{x}{2}\cos \dfrac{x}{2^{2}}, \cos\dfrac{x}{2^{3}}....... \cos\dfrac{x}{2^{x}}\right)$$
$$\sin 2\theta =2\sin \theta\cos\theta$$ $$2\theta=x$$
$$=\sin x=2\left(\sin\dfrac{x}{2}\right)\cos\dfrac{x}{2}$$ $$\theta=\dfrac{x}{2}$$
$$=2\left(2\sin \dfrac{x}{4}\cos \dfrac{x}{4}\right)\cos \dfrac{x}{2}$$ $$2\theta=\dfrac{x}{2}$$
$$\theta=\dfrac{x}{4}$$
$$=8\left(\left(\sin\dfrac{x}{8}\right)\cos\dfrac{x}{8}\cos\dfrac{x}{4}\cos\dfrac{x}{2}\right)$$ $$\dfrac{x}{4}=2\theta$$
$$\theta=\dfrac{x}{8}$$
$$=16\left(\sin \dfrac{x}{16}\cos\dfrac{x}{4}\cos\dfrac{x}{8}\cos\dfrac{x}{4}\cos\dfrac{x}{2}\right)\theta=\dfrac{x}{16}$$
$$=16\left(\sin\dfrac{x}{2^{4}}\cos\dfrac{x}{2^{4}}\cos\dfrac{x}{2^{3}}\cos \dfrac{x}{2^{2}}\cos\dfrac{x}{2}\right)$$
$$\sin x=\left(2^{n}\sin\dfrac{x}{2^{x}}\right)\cos\dfrac{x}{2x}\cos\dfrac{x}{2^{x-1}}.......\cos\dfrac{x}{2^{3}}\cos\dfrac{x}{2^{2}}\cos\dfrac{x}{2}$$
$$\left.\dfrac{\sin x}{2^{x}\sin\dfrac{x}{2^{x}}}\right]=\cos \dfrac{x}{2}\cos\dfrac{x}{2^{2}}\cos\dfrac{x}{2^{3}}..... \cos\dfrac{x}{2^{x}}$$
$$\displaystyle\lim_{x\rightarrow \infty}\dfrac{\sin x}{2^{n}\sin\left(\dfrac{x}{2^{x}}\right)}\lim_{x\rightarrow 0}\dfrac{\sin x}{x}=1$$
$$\overline { \infty } =0$$
$$\displaystyle\lim_{x\rightarrow \infty}\dfrac{\sin x}{2^{x}\dfrac{\sin\left(\dfrac{x}{2^{x}}\right)}{\left(\dfrac{x}{2^{x}}\right)}\times \left(\dfrac{x}{2^{x}}\right)}=\left.\dfrac{\sin x}{x}\right]\lim_{x\rightarrow \infty}\dfrac{\dfrac{1}{\sin\left(\dfrac{x}{2^{x}}\right)}}{\dfrac{x}{2^{x}}}$$
$$=\dfrac{\sin x}{x}$$