Self Studies

Limits and Continuity Test 20

Result Self Studies

Limits and Continuity Test 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Suppose the function $$f(x)-f(2x)$$ has the derivative $$5$$ at $$x=1$$ and derivative $$7$$ at $$x=2$$. The derivative of the function $$f(x)-f(4x)$$ at $$x=1$$, has the value equal to?
    Solution

  • Question 2
    1 / -0
    $$\lim _{ x\rightarrow 0 }{ \log _{ \left( \tan ^{ 2 }{ x }  \right)  }{ \left( \tan ^{ 2 }{ 2x }  \right) = }  }$$
    Solution

    $$\mathop {\lim }\limits_{x \to 0} {\log _{{{\tan }^2}x}}\left( {{{\tan }^2}2x} \right)$$


    Let,

    $$\begin{array}{l} y={ \log _{ { { \tan   }^{ 2 } }x }  }{ \tan ^{ 2 }  }2x \\ =\log { \tan ^{ 2 }  } 2x={ \left( { { { \tan   }^{ 2 } }x } \right) ^{ y } } \\ =2\log  \tan  2x=2y\log  \tan  x \\ \Rightarrow y=\dfrac { { \log  \tan  2x } }{ { \log  \tan  x } }  \\ \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { \log  \tan  2x } }{ { \log  \tan  x } }  \end{array}$$


    Using L-Hospital Rule

    $$\begin{array}{l} \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { \dfrac { 1 }{ { \tan  2x } } \times { { \sec   }^{ 2 } }2x\times 2 } }{ { \dfrac { 1 }{ { \tan  x } } { { \sec   }^{ 2 } }x } }  \\ \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { 2{ { \sec   }^{ 2 } }2x } }{ { \tan  2x } } \times \dfrac { { \tan  x } }{ { { { \sec   }^{ 2 } }x } }  \\ \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { 2\tan  x } }{ { \tan  2x } } \, \, \, \, \, \, \left( { { \lim   }_{ x\to 0 }\sec  x=4 } \right)  \end{array}$$

    $$\begin{array}{l} \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\dfrac { { 2\dfrac { { \tan  x } }{ x } \times x } }{ { \dfrac { { \tan  2x } }{ { 2x } } \times 2x } }  \\ \Rightarrow { \lim   }_{ x\to 0 }y={ \lim   }_{ x\to 0 }\, \, \, 1\, \, \left( { { \lim   }_{ x\to 0 }\dfrac { { \tan  x } }{ x } =1 } \right)  \\ \Rightarrow { \lim   }_{ x\to 0 }{ \log _{ { { \tan   }^{ 2 } }x }  }\left( { { { \tan   }^{ 2 } }2x } \right) =1 \end{array}$$

  • Question 3
    1 / -0
    $$\displaystyle \lim_{n \rightarrow \infty} {^{n}C_{c}}\left(\dfrac {m}{n}\right)^{x}\left(1-\dfrac {m}{n}\right)^{n-x}$$ equal to
    Solution
    Given $$\displaystyle\lim_{n\rightarrow \infty}{^{n}}C_x \bigg(\dfrac{m}{n}\bigg)^{x}\bigg(1-\dfrac{m}{n}\bigg)^{n-x}=$$coefficient of $$x$$ in $$\displaystyle\lim_{n\rightarrow\infty}\bigg(\dfrac{m}{n}+1-\dfrac{m}{n}\bigg)^{n}$$
                                                                       $$=$$coeeficient of $$x$$ in $$\displaystyle\lim_{n\rightarrow\infty}\bigg(1\bigg)^{n}=$$coefficient of $$x$$ in $$1=0$$
  • Question 4
    1 / -0
    If [.] denotes, GIF , then $$\underset{x \rightarrow 0}{lt} \left( \left[\dfrac{2018 sin^{-1} x}{x}\right] + \left[\dfrac{2020x}{tan^{-1} x}\right]\right)$$ = 
    Solution

  • Question 5
    1 / -0
    The value of $$\lim\limits_{x\to 0}\dfrac{1-\cos x}{x^2}$$
    Solution
    Now,
    $$\lim\limits_{x\to 0}\dfrac{1-\cos x}{x^2}$$
    $$=\lim\limits_{x\to 0}\dfrac{2\sin^2\dfrac{x}{2}}{x^2}$$
    $$=\dfrac{1}{2}\times\left(\lim\limits_{\dfrac{x}{2}\to 0}\dfrac{\sin\dfrac{x}{2}}{\dfrac{x}{2}}\right)^2$$
    $$=\dfrac{1}{2}\times 1$$
    $$=\dfrac{1}{2}$$.
  • Question 6
    1 / -0
    $$\displaystyle\mathop {\lim }\limits_{\ x \to 0} \cos \frac{x}{2}\cos \frac{x}{{{2^2}}}\cos \frac{x}{{{2^3}}}......\cos \frac{x}{{{2^n}}}$$ is equal to 
    Solution
    $$\displaystyle\lim_{x\rightarrow \infty}\left(\cos\dfrac{x}{2}\cos \dfrac{x}{2^{2}}, \cos\dfrac{x}{2^{3}}....... \cos\dfrac{x}{2^{x}}\right)$$

    $$\sin 2\theta =2\sin \theta\cos\theta$$      $$2\theta=x$$

    $$=\sin x=2\left(\sin\dfrac{x}{2}\right)\cos\dfrac{x}{2}$$       $$\theta=\dfrac{x}{2}$$

    $$=2\left(2\sin \dfrac{x}{4}\cos \dfrac{x}{4}\right)\cos \dfrac{x}{2}$$     $$2\theta=\dfrac{x}{2}$$

    $$\theta=\dfrac{x}{4}$$

    $$=8\left(\left(\sin\dfrac{x}{8}\right)\cos\dfrac{x}{8}\cos\dfrac{x}{4}\cos\dfrac{x}{2}\right)$$       $$\dfrac{x}{4}=2\theta$$

    $$\theta=\dfrac{x}{8}$$

    $$=16\left(\sin \dfrac{x}{16}\cos\dfrac{x}{4}\cos\dfrac{x}{8}\cos\dfrac{x}{4}\cos\dfrac{x}{2}\right)\theta=\dfrac{x}{16}$$

    $$=16\left(\sin\dfrac{x}{2^{4}}\cos\dfrac{x}{2^{4}}\cos\dfrac{x}{2^{3}}\cos \dfrac{x}{2^{2}}\cos\dfrac{x}{2}\right)$$

    $$\sin x=\left(2^{n}\sin\dfrac{x}{2^{x}}\right)\cos\dfrac{x}{2x}\cos\dfrac{x}{2^{x-1}}.......\cos\dfrac{x}{2^{3}}\cos\dfrac{x}{2^{2}}\cos\dfrac{x}{2}$$

    $$\left.\dfrac{\sin x}{2^{x}\sin\dfrac{x}{2^{x}}}\right]=\cos \dfrac{x}{2}\cos\dfrac{x}{2^{2}}\cos\dfrac{x}{2^{3}}..... \cos\dfrac{x}{2^{x}}$$

    $$\displaystyle\lim_{x\rightarrow \infty}\dfrac{\sin x}{2^{n}\sin\left(\dfrac{x}{2^{x}}\right)}\lim_{x\rightarrow 0}\dfrac{\sin x}{x}=1$$

    $$\overline { \infty  } =0$$

    $$\displaystyle\lim_{x\rightarrow \infty}\dfrac{\sin x}{2^{x}\dfrac{\sin\left(\dfrac{x}{2^{x}}\right)}{\left(\dfrac{x}{2^{x}}\right)}\times \left(\dfrac{x}{2^{x}}\right)}=\left.\dfrac{\sin x}{x}\right]\lim_{x\rightarrow \infty}\dfrac{\dfrac{1}{\sin\left(\dfrac{x}{2^{x}}\right)}}{\dfrac{x}{2^{x}}}$$

    $$=\dfrac{\sin x}{x}$$
  • Question 7
    1 / -0
    $$\underset{h \rightarrow 0}{lim} \dfrac{\sqrt{x + h} -\sqrt{x}}{h}$$ is equal to 
    Solution
    The given limit can be written as,

    $$\underset { h\rightarrow 0 }{ lim } \dfrac { \sqrt { x+h } -\sqrt { x }  }{ h } =\underset { x+h\rightarrow x }{ lim } \dfrac { \sqrt { x+h } -\sqrt { x }  }{ (x+h)-x } $$

    We know that,
    $$\underset { x\rightarrow a }{ lim } \dfrac { { x }^{ n }-{ a }^{ n } }{ x-a } =n{ a }^{ n-1 }$$

    So, the given limit is,
    $$=\dfrac { 1 }{ 2 } { x }^{ \left( \dfrac { 1 }{ 2 } -1 \right)  }=\dfrac { 1 }{ 2\sqrt { x }  } $$
  • Question 8
    1 / -0
    Evaluate:
    $$\lim\limits_{x\to 0}(1+ax)^{\dfrac{1}{x}}$$
    Solution
    Now,
    $$\lim\limits_{x\to 0}(1+ax)^{\dfrac{1}{x}}$$
    $$=\left(\lim\limits_{ax\to 0}(1+ax)^{\dfrac{1}{ax}}\right)^a$$
    $$=e^a$$.
  • Question 9
    1 / -0
    $$\lim\limits_{x\to 0}\dfrac{1-\cos x }{x^2}=$$
    Solution
    Now,
    $$\lim\limits_{x\to 0}\dfrac{1-\cos x}{x^2}$$
    $$=\lim\limits_{x\to 0}\dfrac{2\sin^2\dfrac{x}{2}}{x^2}$$
    $$=\dfrac{1}{2}\lim\limits_{x\to 0}\dfrac{\sin^2\dfrac{x}{2}}{\dfrac{x^2}{4}}$$
    $$=\dfrac{1}{2}\left(\lim\limits_{\dfrac{x}{2}\to 0}\dfrac{\sin\dfrac{x}{2}}{\dfrac{x}{2}}\right)^2$$
    $$=\dfrac{1}{2}.1$$
    $$=\dfrac{1}{2}$$.
  • Question 10
    1 / -0
    $$\underset{x \to 0}{\lim}\dfrac{\sin [ \cos x]}{1+[\cos x]}$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now