Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    $$\underset{x \rightarrow \frac{\pi}{2}}{\lim} \dfrac{\cot x - \cos x}{\left(\dfrac{\pi}{2} -x \right)^3} = $$

  • Question 2
    1 / -0

    $$\mathop {\lim }\limits_{x \to 0} \,\dfrac{1}{x}\,{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$ is equal to

  • Question 3
    1 / -0

    solve the limit 

    $$\mathop {\lim }\limits_{x \to 3} \dfrac{2}{{x - 3}}$$ 

  • Question 4
    1 / -0

    Solve

    $$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x}}{{\tan 3x}}$$

  • Question 5
    1 / -0

    $$\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x}{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$ is equal to

  • Question 6
    1 / -0

    $$\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{2{x^2} + x - 3}} = $$

  • Question 7
    1 / -0

    If   $${z_r} = \cos \dfrac{{r\alpha }}{{{n^2}}} + i\sin \dfrac{{r\alpha }}{{{n^2}}}$$, where $$ r= 1, 2, 3, ....n$$, then $$\mathop {\lim }\limits_{n \to \infty } \left( {{z_1}.{z_2}.....{z_n}} \right)$$ is equal to 

  • Question 8
    1 / -0

    Solve:
    $$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}dx=$$

  • Question 9
    1 / -0

    If $$f(x)$$ is the integral of $$\dfrac{2\sin{x}-\sin{2x}}{x^{3}},\ x\neq 0$$. Find $$\lim _{ x\rightarrow 0 }{ f^{ ' }\left( x \right)  } $$, where $$f^{ ' }\left( x \right) =\dfrac{df{(x)}}{dx}$$

  • Question 10
    1 / -0

    Find the value of limit $$\displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \frac { 2\sin ^{ 2 }{ x } +\sin { x-1 }  }{ 2\sin ^{ 2 }{ x } -3\sin { x+1 }  } = } $$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now