Self Studies

Limits and Continuity Test 22

Result Self Studies

Limits and Continuity Test 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\underset{x \rightarrow \frac{\pi}{2}}{\lim} \dfrac{\cot x - \cos x}{\left(\dfrac{\pi}{2} -x \right)^3} = $$
    Solution

  • Question 2
    1 / -0
    $$\mathop {\lim }\limits_{x \to 0} \,\dfrac{1}{x}\,{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$ is equal to
    Solution
    Solution -
    $$ \displaystyle \lim_{x\rightarrow 0} \frac{1}{x}sin^{-1}(\frac{2x}{1+x^{2}})$$
    we know that
    $$ \displaystyle sin^{-1}x+sin^{-1}y = sin^{-1}(x\sqrt{1-y^{2}}+y\sqrt{1-x^{2}})$$
    $$ \displaystyle sin^{-1}(\frac{2x}{1+x^{2}})= sin^{-1}(\frac{1}{\sqrt{1+x^{2}}})+sin^{-1}(\frac{1}{\sqrt{1+x^{2}}})$$
    $$ \displaystyle = 2sin^{-1}(\frac{1}{\sqrt{1+x^{2}}})-\pi $$
    $$\displaystyle \lim_{x\rightarrow 0} \frac{2sin^{-1}(\frac{1}{\sqrt{1+x^{2}}})-\pi }{x}$$
    from triangle.
    $$ \displaystyle \lim_{x\rightarrow 0} \frac{2tan^{-1}(\frac{1}{x})-\pi }{x}$$
    Apply L Hospital rule-
    $$ \displaystyle \lim_{x\rightarrow 0} 2(\frac{1}{1+(\frac{1}{x})^{2}})$$
    $$ \displaystyle \lim_{x\rightarrow 0} \frac{2x^{2}}{1+x^{2}}$$
    $$ = 0.$$
    B is correct.

  • Question 3
    1 / -0
    solve the limit 
    $$\mathop {\lim }\limits_{x \to 3} \dfrac{2}{{x - 3}}$$ 
    Solution
    $$\displaystyle \lim_{x\rightarrow 3} \dfrac{2}{x-3}$$
    put $$h = x - 3 $$
    $$\displaystyle \lim_{h\rightarrow 0} \dfrac{2}{h}$$
     this is $$\dfrac{2}{0}$$ that is not defined. 
    so limit does not exist.
  • Question 4
    1 / -0
    Solve

    $$\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin 5x}}{{\tan 3x}}$$
    Solution
    Let$$L=\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin 5x}{\tan 3x}$$

    $$= \displaystyle \lim_{x\rightarrow 0}\dfrac {\sin 5x}{5x}\times \dfrac {3x}{\tan x}\times \dfrac {5}{3}$$

    we know that $$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin 5x}{5x}=1$$ and $$\displaystyle \lim_{x\rightarrow 0}\dfrac {3x}{\tan 3x}=1$$


    $$L=1\times 1\times \dfrac {5}{3}$$

    $$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sin 5x}{\tan 3x}= \dfrac {5}{3}$$


  • Question 5
    1 / -0
    $$\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x}{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$ is equal to
    Solution
    $$\mathop {\lim }\limits_{x \to 0} \dfrac{1}{x}{\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)$$

    can be written as 
    $$\mathop {\lim }\limits_{x \to 0} \dfrac{\sin^{-1}(\dfrac{2x}{1+x^2})}{x}$$

    it is of the form $$\dfrac00$$

    So, we will apply L Hospital rule until we will get determinate form

    Differentiating numerator and denominator we will get,
    $$=\lim_{x\to 0}\dfrac{\dfrac{1}{\sqrt{1-(\dfrac{2x}{1+x^2})^2}}.\dfrac{2(1+x^2)-4x^2}{(1+x^2)^2}}{1}=\lim_{x\to0}\dfrac{1}{\sqrt{1-(\dfrac{2x}{1+x^2})^2}}.\dfrac{2(1+x^2)-4x^2}{(1+x^2)^2}=2$$
  • Question 6
    1 / -0
    $$\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{2{x^2} + x - 3}} = $$
    Solution
    Now,
    $$\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{2{x^2} + x - 3}}  $$

    $$=\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{(2{x^2} +3 x-2x - 3)}}  $$

    $$=\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{(x-1)(2x + 3)}}  $$

    $$=\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)\left( {\sqrt x  - 1} \right)}}{{(\sqrt x-\sqrt 1)(\sqrt x+\sqrt 1)(2x + 3)}}  $$

    $$=\mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {2x - 3} \right)}}{{(\sqrt x+\sqrt 1)(2x + 3)}}  $$

    $$=\dfrac{-1}{2\times5}$$

    $$=-\dfrac{1}{10}$$.
  • Question 7
    1 / -0
    If   $${z_r} = \cos \dfrac{{r\alpha }}{{{n^2}}} + i\sin \dfrac{{r\alpha }}{{{n^2}}}$$, where $$ r= 1, 2, 3, ....n$$, then $$\mathop {\lim }\limits_{n \to \infty } \left( {{z_1}.{z_2}.....{z_n}} \right)$$ is equal to 
    Solution
    Solution - 
    $$ z_{r} = \dfrac{cosr\alpha }{n^{2}}+i\dfrac{sinr\alpha }{n^{2}} $$

    Comparing with $$ cos \theta +isin \theta$$

    $$\theta =\dfrac {r\alpha}{n^2}$$

    $$\therefore z_r= e^{\dfrac{ir\alpha }{n^{2}}}$$

    $$ \lim_{n\rightarrow \infty } (z_{1},z_{2},z_{3}....z_n) = e^{\dfrac{i\alpha }{n^{2}}}e^{\dfrac{2i\alpha }{n^{2}}} e^{\dfrac{3i\alpha }{n^{2}}}...e^{\dfrac{ni\alpha }{n^{2}}}$$

    $$ = \lim_{n\rightarrow \infty } e^{i\alpha (\dfrac{1}{n^{2}}+\dfrac{2}{n^{2}}+...)}$$

    $$ = \lim_{n\rightarrow \infty } e^{i\alpha \dfrac{1}{n^2}(1+2+3)}$$

    $$ = \lim_{n\rightarrow \infty } e^{i\alpha (\dfrac{n^{2}+n}{2n^{^{2}}})} \quad \dots S_{n}=\dfrac{n}{2}\left [ 2a+(n-1)d \right ]$$

    at $$ n\rightarrow \infty $$

    $$ = e^{i\alpha }\times \dfrac{1}{2}$$

    $$\lim_{n\rightarrow \infty } (z_{1},z_{2},z_{3}....z_n) = \sqrt{e^{i\alpha }}$$



  • Question 8
    1 / -0
    Solve:
    $$\displaystyle \int_{0}^{1}\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}dx=$$
    Solution
    $$\displaystyle\int_{0}^{1}{\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}}$$

    $$=\displaystyle\int_{0}^{1}{\dfrac{dx}{\sqrt{x+1}+\sqrt{x}}\times\dfrac{\sqrt{x+1}-\sqrt{x}}{\sqrt{x+1}-\sqrt{x}}}$$

    $$=\displaystyle\int_{0}^{1}{\dfrac{\left(\sqrt{x+1}+\sqrt{x}\right)dx}{x+1-x}}$$

    $$=\displaystyle\int_{0}^{1}{\left(\sqrt{x+1}+\sqrt{x}\right)dx}$$

    $$=\left[\dfrac{{\left(x+1\right)}^{\frac{1}{2}+1}}{\dfrac{1}{2}+1}+\dfrac{{\left(x\right)}^{\frac{1}{2}+1}}{\dfrac{1}{2}+1}\right]_{0}^{1}$$

    $$=\left[2\dfrac{{\left(x+1\right)}^{\frac{3}{2}}}{3}+2\dfrac{{\left(x\right)}^{\frac{3}{2}}}{3}\right]_{0}^{1}$$

    $$=2\left[\dfrac{{\left(x+1\right)}^{\frac{3}{2}}}{3}+\dfrac{{\left(x\right)}^{\frac{3}{2}}}{3}\right]_{0}^{1}$$

    $$=\dfrac{2}{3}\left[\left({2}^{\frac{3}{2}}-1\right)-\left(1-0\right)\right]$$

    $$=\dfrac{2}{3}\left[2\sqrt{2}-2\right]$$

    $$=\dfrac{4}{3}\left(\sqrt{2}-1\right)$$
  • Question 9
    1 / -0
    If $$f(x)$$ is the integral of $$\dfrac{2\sin{x}-\sin{2x}}{x^{3}},\ x\neq 0$$. Find $$\lim _{ x\rightarrow 0 }{ f^{ ' }\left( x \right)  } $$, where $$f^{ ' }\left( x \right) =\dfrac{df{(x)}}{dx}$$
    Solution
    $$f(x)=\dfrac{2\sin x-\sin 2x}{x^3}$$    $$x\neq 0$$

    $$f'(x)=\dfrac{df(x)}{dx}=\dfrac{2\sin x-\sin 2x}{x^3}$$

    $$=\dfrac{2\sin  x}{x}\left(\dfrac{1-\cos x}{x^2}\right)$$

    $$\Rightarrow \displaystyle \lim_{x\rightarrow 0}{f'(x)}=\displaystyle \lim_{x\rightarrow 0}{2\left(\dfrac{\sin x}{x}\right)}\left( \dfrac{2\sin^2(x/2)}{x^2}\right)$$

    $$\Rightarrow \displaystyle 4\cdot 1 \lim_{x\rightarrow 0}{\left(\dfrac{\sin^2(x/2)}{4\times (x/2)^2}\right)}$$

    $$=1 $$
  • Question 10
    1 / -0
    Find the value of limit $$\displaystyle \lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \frac { 2\sin ^{ 2 }{ x } +\sin { x-1 }  }{ 2\sin ^{ 2 }{ x } -3\sin { x+1 }  } = } $$.
    Solution
    $$\lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \frac { 2\sin ^{ 2 }{ x } +\sin { x } -1 }{ 2\sin ^{ 2 }{ x } -3\sin { x } +1 }  } \\ =\lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \frac { 2\sin ^{ 2 }{ x } +2\sin { x } -\sin { x } -1 }{ 2\sin ^{ 2 }{ x } -2\sin { x } -\sin { x } +1 }  } \\ =\lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \frac { 2\sin { x } \left( \sin { x } +1 \right) -1\left( \sin { x } +1 \right)  }{ 2\sin { x } \left( \sin { x } -1 \right) -1\left( \sin { x } -1 \right)  }  } \\ =\lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \frac { \left( 2\sin { x } -1 \right) \left( \sin { x } +1 \right)  }{ \left( 2\sin { x } -1 \right) \left( \sin { x } -1 \right)  }  } \\ =\lim _{ x\rightarrow \frac { \pi  }{ 6 }  }{ \frac { \sin { x } +1 }{ \sin { x } -1 }  } \\ =\frac { \frac { 1 }{ 2 } +1 }{ \frac { 1 }{ 2 } -1 } \\ =-3$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now