Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    The value of $$\lim_{x \rightarrow 1} \sec \dfrac{\pi}{2x} \log x$$ is-

  • Question 2
    1 / -0

    Evaluate: $$\underset { x\rightarrow 0 }{ \lim } \dfrac { x\tan2x-2x\tan x }{ \left( 1-\cos2x \right) ^{ 2 } } $$ 

  • Question 3
    1 / -0

    Evaluate: $$\underset { x\rightarrow { 0 } }{ lim } \dfrac { x\tan 2x-2x \tan\ x\quad  }{ (1-\cos2x)^{ 2 } } $$

  • Question 4
    1 / -0

    $$\lim _ { x \rightarrow \frac { \pi } { 2 } } \frac { \cot x - \cos x } { ( \pi - 2 x ) ^ { 3 } }$$ equals:

  • Question 5
    1 / -0

    The function $$f\left( x \right) = \dfrac{{4 - {x^2}}}{{4x - {x^3}}}$$ is

  • Question 6
    1 / -0

    If $$2f(\sin x)+\sqrt {2}f(\cos x)=\tan x,\ (x> 0)$$, then $$\displaystyle \lim _{ x\rightarrow 1 }{ \sqrt { 1-x } f\left( x \right) = }$$ 

  • Question 7
    1 / -0

    $$\underset {x\rightarrow0}{ lim } \dfrac{x \tan 2 x - 2 x \tan x}{(1 - \cos 2 x)^2}$$ equals 

  • Question 8
    1 / -0

    Solve:

    $$\underset{x \rightarrow 2}{Lt} \dfrac{x^{\sqrt{2}} - 2^{\sqrt{2}}}{x - 2} =$$

  • Question 9
    1 / -0

    Let $$f(x)=\begin{cases} { x }^{ 2 }+k,\quad \quad  when\quad x\ge 0 \\ -{ x }^{ 2 }-k,\quad \quad when \quad x<0 \end{cases}$$. If the function $$f(x)$$ be continous at $$x=0$$, then $$k=$$

  • Question 10
    1 / -0

    Evaluate: $$\displaystyle\lim_{x\to 10}\dfrac{x^2-100}{x-10}$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now