Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    $$\underset { x\rightarrow 0 }{ lim } \frac { tan(sinx)-x }{ { tanx }^{ 3 } } $$ is equal to 

  • Question 2
    1 / -0

    The value of $$\displaystyle n\xrightarrow { lim } \infty\frac{1.n+2.(n-1)+3.(n-2)+...+n.1}{{1}^{2}+{2}^{2}+...+{n}^{2}}$$ is

  • Question 3
    1 / -0

    The value of $$\displaystyle \lim _{ x\rightarrow 0 } \dfrac{1+\sin{x}-\cos{x}+\log{(1-x)}}{x^{3}}$$, is

  • Question 4
    1 / -0

    If $$ \mathrm { L } = \lim _ { \mathrm { x } ^ { 2 } \rightarrow \mathrm { a } } \frac { \mathrm { b } - \cos \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) } { \left( \mathrm { x } ^ { 2 } - \mathrm { a } \right) \sin \left( \mathrm { cx } ^ { 2 } - \mathrm { a } \right) } $$ is non-
    zero finite $$ ( \mathrm { a } > 0 ) , $$ then-

  • Question 5
    1 / -0

    The value of $$\displaystyle \lim_{\theta \rightarrow 0^{+}} \dfrac {\sin \sqrt {\theta}}{\sqrt {\sin  \theta}}$$ is equal to

  • Question 6
    1 / -0

    The value of $$\displaystyle \lim_{x\rightarrow 0}\dfrac {\sqrt {1-\cos 2x}}{x}$$ equals

  • Question 7
    1 / -0

    Let $$f:(0, \infty)\to R$$ be a differentiable function such that $$f'(x)=2-\dfrac{f(x)}{x}$$ for all $$x\in (0, \infty)$$ and $$f(1)\neq 1$$. Then 

  • Question 8
    1 / -0

    $$\displaystyle\lim_{x\rightarrow \dfrac{\pi}{2}}\dfrac{\cot x-\cos x}{(\pi -2x)^3}$$ equals?

  • Question 9
    1 / -0

    For $$x>y$$, $$\displaystyle\lim_{x\rightarrow 0}{\left[\left(\sin{x}\right)^{1/x}+\left(\cfrac{1}{x}\right)^{\sin{x}}\right]}$$ is :

  • Question 10
    1 / -0

    If the function $$f(x)$$ satisfies the relation $$f(x+y)=y\dfrac{|x-1|}{(x-1)}f(x)+f(y)$$ with $$f(1)=2$$, then $$\displaystyle\lim_{x\rightarrow 1}f'(x)$$ is?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now