Self Studies

Limits and Continuity Test 29

Result Self Studies

Limits and Continuity Test 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Evaluate the following limits.
    $$\displaystyle\lim_{x\rightarrow 0}\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}$$.
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}}$$

    As $$x\rightarrow 0$$, it is $$\dfrac{0}{0}$$ from, so,
    using rationalisation

    $$\displaystyle \lim_{x\rightarrow 0}{\dfrac{\sqrt{2-x}-\sqrt{2+x}}{x}}\dfrac{(\sqrt{2-x}+\sqrt{2+x})}{(\sqrt{2-x}+\sqrt{2+x})}$$

    $$\displaystyle \lim_{x\rightarrow 0}{\dfrac{(2-x)-(2+x)}{x(\sqrt{2-x}+\sqrt{2+x})}}$$

    $$\displaystyle \lim_{x\rightarrow 0}{\dfrac{-2x}{x(\sqrt{2-x}+\sqrt{2+x})}}=\dfrac{-2}{2\sqrt{2}}=\dfrac{-1}{\sqrt2}$$
  • Question 2
    1 / -0
    Evaluate the following limits.
    $$\displaystyle\lim_{x\rightarrow 4}\dfrac{2-\sqrt{x}}{4-x}$$.
    Solution
    $$\displaystyle \lim_{x\rightarrow 4}{\dfrac{2-\sqrt x}{4-\sqrt x}}$$

    if $$x\rightarrow 4$$, expression $$\rightarrow \dfrac{0}{0}$$, an indetermined form 

    using factorisation

    $$\displaystyle \lim_{x\rightarrow 4}{\dfrac{2-\sqrt x}{2^2-(\sqrt x)^2}}=\displaystyle \lim_{x\rightarrow 4}{\dfrac{2-\sqrt x}{(2-\sqrt x)(2+\sqrt x)}}=\dfrac{1}{4}$$
  • Question 3
    1 / -0
    Evaluate the following limits.
    If $$\displaystyle\lim_{x\rightarrow a}\dfrac{x^9-a^9}{x-a}=9$$, find all possible values of a.
    Solution
    Using formula $$\displaystyle \lim_{x\rightarrow a}{\dfrac{x^n-a^n}{x-a}}=na^{n-1}$$

    $$\displaystyle \lim_{x\rightarrow a}{\dfrac{x^9-a^9}{x-a}}=9.9^8=9$$

    $$a^8=1\Rightarrow a=\pm 1$$
  • Question 4
    1 / -0
    Evaluate the following limits.
    If $$\displaystyle\lim_{x\rightarrow a}\dfrac{x^5-a^5}{x-a}=405$$, find all possible values of a.
    Solution
    $$\displaystyle\lim_{x\rightarrow a}\dfrac{x^{5}-a^{5}}{x-a}=405$$, find $$a$$ ?
    Using $$\displaystyle\lim_{x\rightarrow a}\dfrac{x^{n}-a^{n}}{x-a}=na^{n-1}$$

    $$\displaystyle\lim_{x\rightarrow a}\dfrac{x^{5}-a^{5}}{x-a}=5.a^{4}=405$$

    $$a^{4}=81$$

    $$(a^{2}-9)(a^{2}+9)=0$$

    $$a^{2}-9=0$$

    $$a=3, -3$$
  • Question 5
    1 / -0
    Evaluate the following limits.
    $$\displaystyle\lim_{x\rightarrow 2}\dfrac{\sqrt{1+4x}-\sqrt{5+2x}}{x-2}$$.
    Solution
    Evaluate $$\displaystyle \lim_{x\to 2}\dfrac {\sqrt {1+4x}-\sqrt {5+2x}}{(x-2)}$$
    as $$x\to 2$$, it is $$\dfrac {0}{0}$$ From so,

    using rationalisation 
    $$\displaystyle \lim_{x\to 2}\dfrac {(\sqrt {1+4x}-\sqrt {5+2x}) (1+4x)+\sqrt {5+2x}}{(x-2) (\sqrt {1+4x}+\sqrt {5+2x})}$$

    $$\displaystyle \lim_{x\to 2}\dfrac {((1+4x)-(5+2x))}{(x-2) (\sqrt {1+4x}+\sqrt {5+2x})}$$

    $$\displaystyle \lim_{x\to 2}\dfrac {2(x-2)}{(x-2)(6)}=\dfrac {1}{3}$$
  • Question 6
    1 / -0
    Evaluate the following limit.
    $$\displaystyle\lim_{x\rightarrow 0}\dfrac{8^x-2^x}{x}$$.
    Solution
    we know $$\displaystyle \lim_{x\rightarrow 0}{\dfrac{a^x-1}{x}}=\log a$$

    $$\displaystyle \lim_{x\rightarrow 0}{\dfrac{8^x-2^x}{x}}=\displaystyle \lim_{x\rightarrow 0}{\dfrac{8^x-1+1-2^x}{x}} $$

    $$=\displaystyle \lim_{x\rightarrow 0}{\dfrac{8^x-1}{x}}-\displaystyle \lim_{x\rightarrow 0}{\dfrac{2^x-1}{x}}=\log 8-\log 2$$

    $$=\log 8/2=\log 4$$.                       
  • Question 7
    1 / -0
    If $$f : R \rightarrow (0, \infty)$$ is an increasing function and if $$\displaystyle\lim_{x \rightarrow 2018} \dfrac{f(3x)}{f(x)} = 1$$, then $$\displaystyle\lim_{x \rightarrow 2018} \dfrac{f(2x)}{f(x)}$$ is equal to 
    Solution
    Given $$f : R \rightarrow (0, \infty)$$ is an increasing function.
    And $$\underset{x \rightarrow 2018}{\lim} \dfrac{f(3x)}{f(x)} = 1$$
    So, $$\underset{x \rightarrow 2018}{\lim} f(3x) = \underset{x \rightarrow 2018}{\lim} f(x)$$
    $$\Rightarrow f(x) = $$ constant.
    Therefore,$$ \underset{x \rightarrow 2018}{\lim} \dfrac{f(2x)}{f(x)} = 1$$
  • Question 8
    1 / -0
    If $$f$$ is differentiable at $$x = 1$$ and $$\underset{h \rightarrow 0}{\lim} \dfrac{1}{h} f (1 + h) = 5, f'(1) = $$
    Solution
    $$f'(1)=\underset{h\rightarrow 0}{lim} \dfrac{f(1+h)-f(1)}{h}$$; function is differentiable.
     
    and $$\underset{h\rightarrow 0}{lim} \dfrac{f(1+h)}{h}=5$$ [Given function is continuous]
    $$\Rightarrow f(1)=0$$

    Hence, $$f'(1)=\underset{h\rightarrow 0}{lim} \dfrac{f(1+h)}{h}=5$$
  • Question 9
    1 / -0
    $$\displaystyle \lim _{x \rightarrow 0} \dfrac{x\left(e^{x}-1\right)}{1-\cos x} $$ is equal to
    Solution
    $$\displaystyle \lim _{x \rightarrow 0} \dfrac{x\left(e^{x}-1\right)}{1-\cos x}=\lim _{x \rightarrow 0} \dfrac{2 x\left(e^{x}-1\right)}{4 \sin ^{2} \dfrac{x}{2}} $$
    $$ =2 \displaystyle \lim _{x \rightarrow 0}\left[\dfrac{(x / 2)^{2}}{\sin ^{2} \dfrac{x}{2}}\right]\left(\dfrac{e^{x}-1}{x}\right)=2 $$
  • Question 10
    1 / -0
    $$ \displaystyle \lim _{x \rightarrow-\infty} \dfrac{x^{2} \tan \dfrac{1}{x}}{\sqrt{8 x^{2}+7 x+1}} $$ is equal to
    Solution
     a. $$\displaystyle \lim _{x \rightarrow-\infty} \dfrac{x^{2} \tan \dfrac{1}{x}}{\sqrt{8 x^{2}+7 x+1}}= \displaystyle \lim _{x \rightarrow-\infty} \dfrac{x^{2} \tan \dfrac{1}{x}}{-x \sqrt{8+\dfrac{7}{x}+\dfrac{1}{x^{2}}}} $$
    $$ =-\displaystyle \lim _{x \rightarrow-\infty} \dfrac{\tan \dfrac{1}{x}}{\dfrac{1}{x} \sqrt{8+\dfrac{7}{x}+\dfrac{1}{x^{2}}}}=-\dfrac{1}{2 \sqrt{2}} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now