Self Studies

Limits and Continuity Test 3

Result Self Studies

Limits and Continuity Test 3
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following statement is not correct
    Solution
    All the result other than D are correct.
    The last result will hold only when $$g(x)\ne 0$$ and $$\lim\limits_{x\to c} g(x)\ne 0$$ for $$x$$ belonging to a neighbourhood of $$c$$.
    A, B, C are general results which are always true.
  • Question 2
    1 / -0
    What is the value of $$\underset{x\rightarrow 0}{lim}\dfrac{\sin\,x}{\tan \,3x}$$
    Solution
    Given,

    $$\lim_{x\rightarrow 0}\dfrac{\sin \left(x\right)}{\tan \left(3x\right)}$$

    applying L'Hospital rule, we get,

    $$\lim_{x\rightarrow 0} \dfrac{\cos \left(x\right)}{\sec ^2\left(3x\right)\cdot 3}$$

    $$=\dfrac{\cos \left(0\right)}{\sec ^2\left(3\cdot 0\right)\cdot 3}$$

    $$=\dfrac{1}{3}$$
  • Question 3
    1 / -0
    If $$f(x)=\left\{\begin{array}{l}x-5;\>x\leq 1\\4x^{2}-9;\>1<x\le2\\3x^{2}+4;\>x>2\end{array}\right.$$
    Then $$f(2^{+})-f(2^{-})=$$
    Solution
    Given: $$f(x)=\left\{\begin{array}{l}x-5;\>x\leq 1\\4x^{2}-9;\>1<x\le2\\3x^{2}+4;\>x>2\end{array}\right.$$

     $$f(2^{+})=\displaystyle \lim _{x\rightarrow 2^+} f(x)$$
      
                 $$=\displaystyle \lim _{ h\rightarrow 0}3(2+h)^{2}+4 $$

    $$f(2^+)=16$$

    $$f(2^{-})=\displaystyle \lim _{x\rightarrow 2^-} f(x)$$

                $$=\displaystyle \lim _{ h\rightarrow 0}4(2-h)^{2}-9$$

    $$f(2^-)=7$$

    So, $$f(2^{+})-f(2^{-})=16-7=9$$
  • Question 4
    1 / -0
     If $$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}2\mathrm{x}+\mathrm{b}(\mathrm{x}<\alpha)\\\mathrm{x}+\mathrm{d}(\mathrm{x}\geq\alpha)\end{array}\right.$$is such that
    $$\displaystyle \lim_{x\rightarrow \alpha}f(x) =L$$, then $$L=$$
    Solution
    $$\begin{matrix}lim\\h\rightarrow 0^{-} \end{matrix}\ f(x)=2(\alpha -h)+b=2\alpha +b=L .............(1)\ $$

    $$\begin{matrix}lim\\h\rightarrow 0 ^{+} \end{matrix}\ f(x)=(\alpha +h)+d=L\quad \quad \ \alpha =L-d\ ................(2)$$

    Substituting value of euation (2)in (1), we get
    $$2\left ( L-d \right )+b=L$$
    $$L=2d-b$$

    Hence, option 'A' is correct.
  • Question 5
    1 / -0
    lf $$f(x)=x,x<0;f(x)=0,x=0$$; $$f(x)=x^{2};x>0$$, then $$\displaystyle \lim_{x\rightarrow 0}f(x)$$ is equal to
    Solution
    Given: $$f(x)$$= $$\left\{ \begin{matrix} x \\ 0 \\ x^ 2 \end{matrix}\begin{matrix}\quad x<0 \\\quad x=0 \\ \quad x>0 \end{matrix} \right\} $$
    To Find : $$\underset{x\rightarrow 0}{\lim}$$  $$f(x)$$= ?
    Sol: left hand limit $$\rightarrow $$ $$\underset{x\rightarrow 0^-}{\lim}$$ $$f(x)$$=$$\underset{x\rightarrow 0}{\lim}$$ $$x$$ =$$0$$
    right hand limit $$\rightarrow $$ $$\underset{x\rightarrow 0^+}{\lim}$$ f(x)=$$\underset{x\rightarrow 0}{\lim}$$ $$x^2$$ =$$0$$, 
    LHL=RHL
    $$f(0)=0$$
    $$LHL=RHL=f(0)=0$$
  • Question 6
    1 / -0
    $$f(x)=2x+1, a=1,l=3$$ and $$\epsilon=0.001$$, then $$\delta>0$$ satisfying $$0<|x-a|<\delta$$ such that $$|f(x)-l|<\epsilon$$, is

    Solution
    We have to find $$\delta>0$$, which satisfies $$0<|x-a|<\delta$$ such that $$|f(x)-l|<\epsilon$$
    $$\because |f(x)-l| <\epsilon$$
    $$\Rightarrow -\epsilon <f(x)-l<\epsilon$$
    $$\Rightarrow l-\epsilon<f(x)<l+\epsilon$$
    $$\Rightarrow 3-\epsilon<2x+1<3+\epsilon$$
    $$\Rightarrow -\epsilon<2x-2<\epsilon$$
    $$\Rightarrow -\dfrac{\epsilon }{2}<x-1<\dfrac{\epsilon }{2}$$
    $$\Rightarrow |x-1|<\dfrac{\epsilon }{2}$$
    $$\Rightarrow |x-a| <\dfrac{\epsilon }{2}$$
    $$\delta = \dfrac{\epsilon}{2} = \dfrac{0.001}{2} = 0.0005$$

    Hence, option A.
  • Question 7
    1 / -0
     Evaluate: $$\displaystyle \lim_{h\rightarrow 0}\left(\frac{1}{h\sqrt[3]{8+h}}-\frac{1}{2h}\right)$$
    Solution
    Let  $$L =\displaystyle \lim_{h\rightarrow 0}\left(\frac{1}{h\sqrt[3]{8+h}}-\frac{1}{2h}\right) =\lim_{h\rightarrow 0}\frac{1}{h}\left(\frac{1}{\sqrt[3]{8+h}}-\frac{1}{2}\right)$$

    Let $$a= \sqrt[3]{8+h}\Rightarrow a^3 = 8+h$$ and $$b=2\Rightarrow b^3 =8$$

    Also $$a^3-b^3=(a-b)(a^2+b^2+ab)=8+h-8 =h\Rightarrow $$ (1)

    $$\therefore\displaystyle  L = \lim_{h\to 0}\frac{1}{h}\left( \frac{1}{a}-\frac{1}{b}\right)=-\lim_{h\to 0}\frac{a-b}{h}\cdot \frac{1}{ab}$$ 

    $$\displaystyle \quad = -\lim_{h\to 0}\frac{a^3-b^3}{h}\cdot \frac{1}{ab(a^2+b^2+ab)}$$

    $$\displaystyle \quad = -\lim_{h\to 0}\frac{h}{h}\cdot \frac{1}{ab(a^2+b^2+ab)}$$ .....using $$(1)$$

    As $${h \rightarrow 0}\Rightarrow a^3=8\Rightarrow a=2$$

    $$\displaystyle \quad =-\frac{1}{2\times 2(2^2+2^2+2\times 2)}=$$

         $$=-\dfrac{1}{48}$$
  • Question 8
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\frac{(1-e^{x})\sin x}{x^{2}+x^{3}}=$$
    Solution
    The expression can be simplified as,
    (lim $$ x \rightarrow 0     \dfrac{(1-{e}^{x})}{x}) \times (\dfrac{sin x}{x})( lim _{ x \rightarrow 0}     \dfrac{1}{1+x} )$$
    Now using,
    lim $$ x \rightarrow 0     \dfrac{({e}^{x} - 1)}{x} = 1 $$
    lim $$ x \rightarrow 0    \dfrac{sin x}{x} $$ $$= 1$$
    We get,
    $$(-1)$$ $$ \times 1 \times lim  x \rightarrow 0     \dfrac{1}{1+x} $$
    $$= -1$$
  • Question 9
    1 / -0
     lf $$\displaystyle \lim_{x\rightarrow a^+}f(x)=L$$, then for each $$\epsilon>0$$, there exists $$\delta>0$$ so that
    Solution
    It is fundamental concept that, for limit of a function $$f(x)$$ to exist at any point $$a$$ there exists a real number $$\delta>0$$, such that $$0< |x-a|<\delta$$, for which $$|f(x)-L| < \epsilon$$, where $$\epsilon >0$$
  • Question 10
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0}\frac{1-\cos x}{x\log(1+x)}=$$
    Solution
    $$\displaystyle \lim_{x\rightarrow 0}\dfrac{1-\cos x}{x\log(1+x)}$$

    $$\displaystyle\lim _{ x\rightarrow 0 } \displaystyle \dfrac { 2\sin ^{ 2 }{ \dfrac { x }{ 2 }  }  }{ x\log  (1+x) }$$

    $$ =\displaystyle\lim _{ x\rightarrow 0 }\displaystyle \dfrac { 2\displaystyle\dfrac { \sin ^{ 2 }{ \dfrac { x }{ 2 }  }  }{ { \left(\displaystyle\dfrac { x }{ 2 } \right) }^{ 2 } } \times \dfrac { 1 }{ 4 }  }{\displaystyle \dfrac { 1 }{ x } \log  (1+x) } $$

    $$=\displaystyle\lim _{ x\rightarrow 0 }\displaystyle \dfrac { \displaystyle\dfrac { 1 }{ 2 }  }{ \dfrac{\log{ (1+x) }}{ x } } =\dfrac{1}{2}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now