Self Studies

Limits and Continuity Test 33

Result Self Studies

Limits and Continuity Test 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The graph of the function $$y = f (x)$$ has a unique tangent at the point $$(e^{a} ,0)$$ through which the graph passes then $$\displaystyle \lim_{x\rightarrow e^{a}}\frac{log_{e}\{1+7f(x)\}-sinf(x)}{3f(x)}$$ is
    Solution
    Given $$y=f(x)$$ has a unique tangent at the point $$(e^a,0)$$. 
    So, as $$x\rightarrow e^{a}$$, $$f(x)\rightarrow 0$$

    Now, $$\displaystyle \lim_{x\rightarrow e^{a}}\frac{log_{e}\{1+7f(x)\}-\sin f(x)}{3f(x)}$$

    $$\displaystyle \lim _{ x\rightarrow e^{ a } } \frac { log_{ e }(1+7f(x)) }{ 3f(x) } -\frac { \sin f(x) }{ 3f(x) } $$

    $$\displaystyle =\frac { 7 }{ 3 } \lim _{ x\rightarrow e^{ a } } \frac { log_{ e }(1+7f(x)) }{ 7f(x) } -\frac { 1 }{ 3 } \lim _{ x\rightarrow e^{ a } } \frac { \sin f(x) }{ f(x) } $$

    $$=\dfrac{7-1}{3}=2$$
  • Question 2
    1 / -0
    $$\displaystyle f\left( x \right)=\begin{cases} \begin{matrix} \frac { \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x } -1 }{ \sqrt { { x }^{ 2 }+4 } -2} , & x\neq 0 \end{matrix} \\ \begin{matrix} a, & x=0 \end{matrix} \end{cases}$$ then the value of $$a$$ in order that $$f(x)$$ may be continuous at $$x=0$$ is
    Solution
    Given: $$\displaystyle f\left( x \right) =\begin{cases} \begin{matrix} \dfrac { \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x-1 }  }{ \sqrt { { x }^{ 2 }+4 } -2 } , & \left( x\neq 0 \right)  \end{matrix} \\ \begin{matrix} a, & \left( x\neq 0 \right)  \end{matrix} \end{cases}$$ is continuous at $$x=0$$, then 

    $$\displaystyle \lim _{ x\rightarrow 0 }{ f\left( x \right)  } =\lim _{ x\rightarrow 0 }{ \dfrac { \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x-1 }  }{ \sqrt { { x }^{ 2 }+4 } -2 }  }$$


    $$\displaystyle =\lim _{ x\rightarrow 0 }{ \dfrac { \cos { 2x-1 }  }{ \sqrt { { x }^{ 2 }+4 } -2 }  } $$
    As th function is of the $$\dfrac{0}{0}$$ form,applying L-Hospital's rule,

    $$\displaystyle =\lim _{ x\rightarrow 0 }{ \left[ \dfrac { \dfrac { -2\sin { 2x }  }{ x }  }{ \sqrt { { x }^{ 2 }+4 }  }  \right]  } $$ 

    $$\displaystyle =\lim _{ x\rightarrow 0 }{ 2\frac { -\sin { 2x } \sqrt { { x }^{ 2 }+4 }  }{ x }  } $$

    $$\displaystyle =-\lim _{ x\rightarrow 0 }{ 2\left[ 2\cos { 2x } \sqrt { { x }^{ 2 }+4 } +\sin { 2x } \frac { x }{ \sqrt { { x }^{ 2 }+4 }  }  \right]  } $$  

    $$\displaystyle =-\left[ 4\sqrt { 4 }  \right] =-8$$

    Thus, $$\displaystyle \lim _{ x\rightarrow 0 }{ f\left( x \right)  } =-8$$  

    For function to be continuous at $$x=0$$.
    $$\displaystyle f\left( 0 \right) =\lim _{ x\rightarrow 0 }{ f\left( x \right)  } $$ $$\displaystyle \Rightarrow a=-8$$
  • Question 3
    1 / -0
    If $$\displaystyle f(x)=\frac{\sin 3x+A\sin 2x+B\sin x}{x^{5}};x\neq 0$$ is continuous at $$x=0$$ , then
    Solution
    $$f(x)=\displaystyle \frac { sin3x+Asin2x+Bsinx }{ x^{ 5 } } ;x\neq 0$$
    $$\displaystyle \lim _{ x\rightarrow 0 }{ f(x)= } \lim _{ x\rightarrow 0 }{\displaystyle \frac { sin3x+Asin2x+Bsinx }{ x^{ 5 } }  } $$
    It is of the  form $$\displaystyle \frac{0}{0}$$, so applying L-Hospital's rule
    $$=\displaystyle \lim _{ x\rightarrow 0 }{ \displaystyle\frac { 3\cos { 3x } +2A\cos { 2x } +B\cos { x }  }{ 5x^{ 4 } }  } $$
    As $$x\to 0 , D^{r} \to 0 \Rightarrow N^{r} \to 0$$
    $$\displaystyle \lim _{ x\rightarrow 0 }{ 3\cos { 3x } +2A\cos { 2x } +B\cos { x } =0 } $$
    $$\Rightarrow 3+2A+B=0$$            .....(i)
    Again $$\displaystyle \lim _{ x\rightarrow 0 }{\displaystyle \frac { 3\cos { 3x } +2A\cos { 2x } +B\cos { x }  }{ 5x^{ 4 } }  } $$ is of the form $$\displaystyle \frac {0}{0}$$
    $$=\displaystyle \lim _{ x\rightarrow 0 }{ \displaystyle\frac { -9\sin { 3x } -4A\sin { 2x } -B\sin { x }  }{ 20x^{ 3 } }  } $$
    Again of the form $$\displaystyle \frac {0}{0}$$
    $$=\displaystyle \lim _{ x\rightarrow 0 }{\displaystyle \frac { -27\cos { 3x } -8A\cos { 2x } -B\cos { x }  }{ 60x^{ 2 } }  } $$
    As $$x\to 0 , D^{r} \to 0 \Rightarrow N^{r} \to 0$$
    $$\displaystyle \lim _{ x\rightarrow 0 }{ -27\cos { 3x } -8A\cos { 2x } -B\cos { x }  } =0$$
    $$\Rightarrow 27+8A+B=0$$            .....(ii)
    Solving (i) and (ii), we get
    $$A=-4, B=5$$
    Thus, $$A+B=1$$
  • Question 4
    1 / -0
    $$f(x)=\left\{\begin{array}{ll}\dfrac{(x+bx^{2})^{1/_{2}}-x^{1/2}}{bx^{3/2}} & x>0\\c & x=0\\\dfrac{\sin(a+1)x+\sin x}{x} & x<0\end{array}\right.$$ is continuous at $${x}=0$$, then
    Solution
    Given: $$f(x)=\left\{\begin{array}{ll}\dfrac{(x+bx^{2})^{1/_{2}}-x^{1/2}}{bx^{3/2}} & x>0\\c & x=0\\\dfrac{\sin(a+1)x+\sin x}{x} & x<0\end{array}\right.$$ is continuous at $${x}=0$$

    Multiply and divide by $$((x+bx^{2})^{1/_{2}}+x^{1/2})$$

    $$\displaystyle\lim_{x\rightarrow 0^{+}}  =\lim_{x\to0}\dfrac{(x+bx^2) + (x)}{bx^{\frac{3}{2}}((x+bx^2)^{\frac{1}{2}} + x^{\frac{1}{2}})} $$

    $$\displaystyle = \lim_{x\to 0}\dfrac{x^{\frac{1}{2}}}{{(x+bx^{2})^{\frac{1}{2}}+x^{\frac{1}{2}}}}$$

    $$\displaystyle = \lim_{x\to0}\dfrac{1}{(1+bx)\dfrac{1}{2}+1} = \dfrac12$$

    $$\displaystyle\lim_{x\rightarrow 0}  \dfrac{(a+1)sin(a+1)x}{(a+1)x}+\dfrac{sin x}{x}$$

    $$(a+1)+1 =\dfrac{1}{2}$$

    $$a=\dfrac{-3}{2}$$

    $$c=\dfrac{1}{2}$$   (By continuity)
  • Question 5
    1 / -0
    Assertion(A): $$f(x)=\left\{\begin{array}{ll}x^{2}\sin(\frac{1}{x}) , & x\neq 0\\0, & x=0\end{array}\right.$$ is continuous at $${x}=0$$
    Reason(R): Both $$h(x)=x^{2},g(x)=
    \left\{\begin{array}{ll}\sin(\frac{1}{x}) , & x\neq 0\\0, & x=0\end{array}\right.$$are continuous at $$x = 0$$
    Solution
    Assertion
    $$f(0)=0$$
    $$\displaystyle \lim _{ x\rightarrow 0 }{ { x }^{ 2 }\sin { \left( \cfrac { 1 }{ x }  \right)  }  } ={ 0 }^{ 2 }\times $$ (finite value)

    $$=0$$
    $$\therefore $$ It is continuous at $$x=0$$

    Reason: $$h\left( x \right) ={ x }^{ 2 }$$ is continuous
    but $$g\left( x \right) $$ is not continuous
    $$\displaystyle \lim _{ x\rightarrow 0 }{ \sin { \left( \cfrac { 1 }{ x }  \right)  }  } =$$not defined (value oscillates)
    $$\displaystyle \lim _{ x\rightarrow 0 }{ \sin { \left( \cfrac { 1 }{ x }  \right)  }  } \neq 0$$

    $$\therefore$$ not continuous.
  • Question 6
    1 / -0
    If $$\phi (x) =\displaystyle \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}}$$, then
    Solution
    We have,
    $$\displaystyle \lim_{n \rightarrow \infty} x^{2n} = \left\{\begin{matrix}0,& if  |x| < 1\\ \infty, & if  |x| > 1 \\ 1, & if |x| = 1\end{matrix}\right.$$
    Thus, we have the following cases:
    CASE I When $$- 1 < x < 1$$
    In this case, we have $$\displaystyle \lim_{n \rightarrow \infty} x^{2n} = 0$$
    $$\therefore \phi (x) =\displaystyle  \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}} = g(x)$$
    CASE II When $$|x| > 1$$
    In this case, we have $$\displaystyle \lim_{n \rightarrow \infty} \displaystyle \frac{1}{x^{2n}} = 0$$
    $$\therefore \phi (x) = \displaystyle \lim_{n \rightarrow \infty} \frac{x^{2n} f(x) + g(x)}{1 + x^{2n}}$$
    $$\Rightarrow \phi (x) =\displaystyle  \lim_{n \rightarrow \infty} \frac{f(x) + \displaystyle \frac{g(x)}{x^{2n}}}{1 + \displaystyle \frac{1}{x^{2n}}} = \displaystyle \frac{f(x) + 0}{1 + 0} = f(x)$$
    CASE III  When $$|x| = 1$$
    In this case, we have $$x^{2n} = 1\Rightarrow \displaystyle \lim_{n \rightarrow \infty } x^{2n}=1$$.
    $$\therefore \phi (x) = \displaystyle \frac{f(x) + g(x)}{2}$$
  • Question 7
    1 / -0
    If $${ x }_{ 1 },{ x }_{ 2 },{ x }_{ 3 },..,{ x }_{ n }$$ are the roots of the equation $$x^n+ax+b=0,$$ then the value of $$\left( { x }_{ 1 }-{ x }_{ 2 } \right) \left( { x }_{ 1 }-{ x }_{ 3 } \right) \left( { x }_{ 1 }-{ x }_{ 4 } \right) ...\left( { x }_{ 1 }-{ x }_{ n } \right) $$ is equal to
    Solution
    Given:$${ x }_{ 1, }{ x }_{ 2, }{ x }_{ 3 }.....{ x }_{ n }$$ are the roots of $${ x }^{ n }+ax+b=0$$
    To find: $$\left( { x }_{ 1 }-{ x }_{ 2 } \right) \left( { x }_{ 1 }-{ x }_{ 3 } \right) ......\left( { x }_{ 1 }-{ x }_{ n } \right) =?$$
    Sol: $$\left( { x }_{ 1 }-{ x }_{ 2 } \right) \left( { x }_{ 1 }-{ x }_{ 3 } \right) ......\left( { x }_{ 1 }-{ x }_{ n } \right) $$
    $$=\dfrac { \left( { x }_{ 1 }-{ x }_{ 1 } \right) \left( { x }_{ 1 }-{ x }_{ 2 } \right)  }{ ({ x }_{ 1 }-{ x }_{ 1 } )} ........\left( { x }_{ 1 }-{ x }_{ 2 } \right) $$
    $$=\lim _{ x\rightarrow { x }_{ 1 } }{ \dfrac { \left( x-{ x }_{ 1 } \right) \left( x-{ x }_{ 2 } \right) .........\left( x-{ x }_{ n } \right)  }{ \left( x-{ x }_{ 1 } \right)  }  } $$
    $$=\lim _{ x\rightarrow { x }_{ 1 } }{ \dfrac { { x }^{ n }+ax+b }{ \left( x-{ x }_{ 1 } \right)  }  } $$
    Using l'Hospital rule, we get
    $$\lim _{ x\rightarrow { x }_{ 1 } }{ \dfrac { n.{ x }^{ n-1 }+a }{ 1 }  } ={ nx }_{ 1 }^{ n-1 }+a$$
    Hence, correct answer is $${ nx }_{ 1 }^{ n-1 }+a$$
  • Question 8
    1 / -0
    If $$\displaystyle f(x) = \frac{x - e^x + cos  2x}{x^2}, x \neq 0$$, is continuous at $$x = 0$$, 
    where [x] and {x} denotes the greatest integer and fractional part functions, respectively.

    Then which of the following is correct?
    Solution
    $$\displaystyle \lim_{h \rightarrow 0} \frac{x- e^x + 1 - (1 - cos  2x)}{x^2}$$

    $$\displaystyle = \lim_{h \rightarrow 0} \left [ \frac{x - e^x + 1}{x^2} - \frac{(1 - cos  2x)}{x^2} \right ]$$

    $$= \displaystyle\lim_{h \rightarrow 0} \left [ \frac{x + 1 - \left (1 + x + \frac{x^2}{2} \right )}{x^2} - \frac{2sin^2 x}{x^2} \right ]$$    (Using expansion of $$e^x$$)

    $$\displaystyle  = - \frac{1}{2} - 2 = - \frac{5}{2}$$
    Hence, for continuity, $$f(0) = - \displaystyle \frac{5}{2}$$

    Now, $$[f(0)] = - 3;  \{ f(0) \} = \displaystyle \left \{ - \frac{5}{2} \right \} = \frac{1}{2}$$.
    Hence, $$[f(0)] \{ f(0) \} = \displaystyle - \frac{3}{2} = - 1.5$$
    Hence, option D is correct.
  • Question 9
    1 / -0
    If $$f(x) = \displaystyle \left\{\begin{matrix}\dfrac{8^x - 4^x - 2^x+1}{x^2}, & x>0\\ e^x \sin  x+ \pi  x + \lambda  \ln  4, & x \leq 0\end{matrix}\right.$$ is continuous at $$x = 0$$, then the value of $$\lambda$$ is
    Solution
    Given f(x) is continuous at $$x=0 $$
    $$\Rightarrow LHL=RHL=f(0)$$

    Now, $$f(0) = 0 + 0 + \lambda  ln  4= \lambda  ln  4$$                 ....(1)
    $$R.H.L. = \displaystyle \lim_{x  \rightarrow 0^+} f(x) = \lim_{h \rightarrow 0} f(0+h)$$

    $$\displaystyle \lim_{h \rightarrow 0} \frac{8^h - 4^h - 2^h + 1}{h^2}$$

    $$\displaystyle \lim_{h \rightarrow 0} \frac{(4^h - 1)(2^h - 1)}{h.h}$$

    $$\displaystyle \lim_{h \rightarrow 0}\left ( \frac{4^h - 1}{h} \right ) \lim_{h \rightarrow 0} \left ( \frac{2^h - 1}{h} \right)$$
    $$\Rightarrow RHL = \log 4 \log 2$$            ..... (2)

    $$\therefore f(0) = R.H.L.$$
    $$\therefore \lambda = \log 2$$
  • Question 10
    1 / -0
    STATEMENT-1 : $$\displaystyle \lim_{x \rightarrow 0} [x] \left \{ \frac{e^{1/x} - 1}{e^{1/x} + 1} \right \}$$ (where [.] represents the greatest integer function) does not exist.
    STATEMENT-2 : $$\displaystyle \lim_{x \rightarrow 0} \left ( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right )$$ does not exists.
    Solution
    I) $$\displaystyle \lim_{x \rightarrow 0} [x] \left \{ \frac{e^{1/x} - 1}{e^{1/x} + 1} \right \}$$

    $$RHL=\displaystyle \lim_{x \rightarrow 0^+} [x] \left ( \frac{e^{1/x} - 1}{e^{1/x}+1} \right) $$

    $$=\lim _{ h\rightarrow 0 } [h]\left(\displaystyle \frac { e^{ 1/h }-1 }{ e^{ 1/h }+1 }  \right) $$

    $$= \lim_{h  \rightarrow 0} [h] \left ( \displaystyle\frac{1 - e^{-1/h}}{1 + e^{-1/h}} \right) $$
    $$= 0 \times 1 = 0$$

    $$LHL=\displaystyle \lim_{x \rightarrow 0^-} [x] \left ( \frac{e^{1/x}- 1}{e^{1/x} + 1} \right )$$

    $$= \lim_{h \rightarrow 0} [-h] \left ( \displaystyle\frac{e^{-1/h} - 1}{e^{-1/h} + 1} \right) $$
    $$= -1 \times (-1) = 1$$
    Here, $$LHL \ne RHL$$
    Thus, given limit does not exist.

    II) 
    $$\displaystyle \lim_{x \rightarrow 0} \left ( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right )$$ 

    $$RHL=\displaystyle \lim_{x \rightarrow 0^+} \left ( \frac{e^{1/x} - 1}{e^{1/x}+1} \right) $$

    $$=\lim _{ h\rightarrow 0 }\left(\displaystyle \frac { e^{ 1/h }-1 }{ e^{ 1/h }+1 }  \right) $$

    $$= \lim_{h  \rightarrow 0} \left ( \displaystyle\frac{1 - e^{-1/h}}{1 + e^{-1/h}} \right) $$
    $$RHL= 1 $$

    $$LHL=\displaystyle \lim_{x \rightarrow 0^-} \left ( \frac{e^{1/x}- 1}{e^{1/x} + 1} \right )$$

    $$= \lim_{h \rightarrow 0}  \left ( \displaystyle\frac{e^{-1/h} - 1}{e^{-1/h} + 1} \right) $$
    $$LHL= -1$$

    So, $$\displaystyle \lim_{x \rightarrow 0} \left ( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right)$$ does not exist, but this cannot be taken as only reason for non-existence of $$\displaystyle \lim_{x \rightarrow 0} [x] \left ( \frac{e^{1/x} - 1}{e^{1/x} + 1} \right )$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now