Given: $$\displaystyle f\left( x \right) =\begin{cases} \begin{matrix} \dfrac { \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x-1 } }{ \sqrt { { x }^{ 2 }+4 } -2 } , & \left( x\neq 0 \right) \end{matrix} \\ \begin{matrix} a, & \left( x\neq 0 \right) \end{matrix} \end{cases}$$
is continuous at $$x=0$$, then
$$\displaystyle \lim _{ x\rightarrow 0 }{ f\left( x \right) } =\lim _{ x\rightarrow 0 }{ \dfrac { \cos ^{ 2 }{ x } -\sin ^{ 2 }{ x-1 } }{ \sqrt { { x }^{ 2 }+4 } -2 } }$$
$$\displaystyle =\lim _{ x\rightarrow 0 }{ \dfrac { \cos { 2x-1 } }{ \sqrt { { x }^{ 2 }+4 } -2 } } $$
As th function is of the $$\dfrac{0}{0}$$ form,applying L-Hospital's rule,
$$\displaystyle =\lim _{ x\rightarrow 0 }{ \left[ \dfrac { \dfrac { -2\sin { 2x } }{ x } }{ \sqrt { { x }^{ 2 }+4 } } \right] } $$
$$\displaystyle =\lim _{ x\rightarrow 0 }{ 2\frac { -\sin { 2x } \sqrt { { x }^{ 2 }+4 } }{ x } } $$
$$\displaystyle =-\lim _{ x\rightarrow 0 }{ 2\left[ 2\cos { 2x } \sqrt { { x }^{ 2 }+4 } +\sin { 2x } \frac { x }{ \sqrt { { x }^{ 2 }+4 } } \right] } $$
$$\displaystyle =-\left[ 4\sqrt { 4 } \right] =-8$$
Thus, $$\displaystyle \lim _{ x\rightarrow 0 }{ f\left( x \right) } =-8$$
For function to be continuous at $$x=0$$.
$$\displaystyle f\left( 0 \right) =\lim _{ x\rightarrow 0 }{ f\left( x \right) } $$ $$\displaystyle \Rightarrow a=-8$$