Self Studies

Limits and Continuity Test 34

Result Self Studies

Limits and Continuity Test 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle\lim_{x\rightarrow a}{(f(x)+g(x))}=2$$ and $$\displaystyle\lim_{x\rightarrow a}{(f(x)-g(x))}=1$$, 
    then the value of $$\displaystyle\lim_{x\rightarrow a}{f(x)g(x)}$$ is?
    Solution
    Given, $$\displaystyle\lim_{x\rightarrow a}{(f(x)+g(x))}=2$$ and $$\displaystyle\lim_{x\rightarrow a}{(f(x)-g(x))}=1$$,

    Lets, assume $$F(x) = (f(x) + g(x))$$ and $$ G(x) = (f(x) - g(x))$$
    $$\because$$ Limits of both $$F(x)$$ and $$G(x)$$ exists as $$x\rightarrow a$$, we can say that
    $$\displaystyle\lim_{x\rightarrow a}{(F(x)+G(x))}$$ and $$\displaystyle\lim_{x\rightarrow a}{(F(x)-G(x))}$$ also exists.

    $$\displaystyle\therefore\lim_{x\rightarrow a}{(F(x)+G(x))} = 3$$
    $$\displaystyle\Rightarrow 2\times\lim_{x\rightarrow a}{f(x)} = 3$$
    $$\Rightarrow \lim_{x\rightarrow a}{f(x)} = \dfrac{3}{2}$$
    Similarly,
    $$\displaystyle\lim_{x\rightarrow a}{(F(x)-G(x))} = 1$$
    $$\displaystyle\Rightarrow 2\times\lim_{x\rightarrow a}{g(x)} = 1$$
    $$\Rightarrow \lim_{x\rightarrow a}{g(x)} = \dfrac{1}{2}$$
    Hence,
    $$\displaystyle\lim_{x\rightarrow a}{(f(x)\cdot g(x))} = \lim_{x\rightarrow a}{f(x)}\cdot\lim_{x\rightarrow a}{g(x)} = \dfrac{3}{2}\times \dfrac{1}{2} = \dfrac{3}{4}$$

    Hence, option B.
  • Question 2
    1 / -0
    $$x$$$$1$$$$2$$$$3$$$$4$$$$5$$
    $$f(x)$$$$4$$$$3$$$$7$$$$1$$$$3$$
    The function f is continuous on the closed interval $$[1, 5]$$ and values of the function are shown in the table above. If the values in the table are used to calculate a trapezoidal sum, the approximate value of $$\int_{1}^{5}f(x)dx$$ is
    Solution

  • Question 3
    1 / -0
    The value of $$\displaystyle \underset { n\rightarrow \infty  }{ lim } \left( \frac { 1 }{ n+1 } +\frac { 1 }{ n+2 } +...+\frac { 1 }{ 6n }  \right) $$ is
  • Question 4
    1 / -0
    A point where function $$f(x)$$ is not continuous where $$f(x)=\left[ \sin { \left[ x \right]  }  \right] $$ in $$\left( 0,2\pi  \right) $$; is ($$\left[ \ast  \right] $$ denotes greatest integer $$\le x$$)
  • Question 5
    1 / -0
    The value of $$\lim _{ x\rightarrow 0 }{ \left( { \left( \sin { x }  \right)  }^{ 1/x }+{ \left( 1+x \right)  }^{ \sin { x }  } \right)  } $$ whre $$x> 0$$ is
    Solution
    Given $$\lim _{ x\rightarrow 0 }{ \left( { \left( sinx \right)  }^{ { \frac { 1 }{ x }  } }+{ \left( 1+x \right)  }^{ sinx } \right)  } $$

    $$=\lim _{ x\rightarrow 0 }{ { \left( sinx \right)  }^{ { \frac { 1 }{ x }  } }+\lim _{ x\rightarrow 0 }{ { \left( 1+x \right)  }^{ sinx } }  } $$

    $$={ \left( sin0 \right)  }^{ { \frac { 1 }{ 0 }  } }+\lim _{ x\rightarrow 0 }{ { \left( 1+x \right)  }^{ sinx } } $$

    $$={ \left( 0 \right)  }^{ { \infty  } }+\lim _{ x\rightarrow 0 }{ { \left( 1+x \right)  }^{ sinx } } $$

    $$=0+{ e }^{ \lim _{ x\rightarrow 0 }{ \left[ log{ \left( 1+x \right)  }^{ sinx } \right]  }  }$$
                        $$\left( \because { e }^{ loga }=a \right) $$

    $$={ e }^{ \lim _{ x\rightarrow 0 }{ \left[ sinx.log{ \left( 1+x \right)  } \right]  }  }$$

    $$={ e }^{ \lim _{ x\rightarrow 0 }{ sinx } \times \lim _{ x\rightarrow 0 }{ log\left( 1+x \right)  }  }$$

    $$={ e }^{ sin\left( 0 \right) \times log\left( 1+0 \right)  }$$

    $$={ e }^{ 0\times log\left( 1 \right)  }$$

    $$={ e }^{ 0\times 0 }={ e }^{ 0 }$$

    $$=1$$
  • Question 6
    1 / -0
    $$ \underset { n \rightarrow \infty }{ Lt } \sum _{ r=2n+1\quad  }^{ 3n } \dfrac {n}{r^2 - n^2} $$ is equal to :
    Solution

  • Question 7
    1 / -0
    The value of $$\displaystyle \lim_{x \rightarrow 1^{-}}\dfrac {1 - \sqrt {x}}{(\cos^{-1}x)^{2}}$$
    Solution
    $${ lim }_{ x\rightarrow 1 }\left( \frac { 1-\sqrt { x }  }{ (cos^{ -1 }x)^{ 2 } }  \right) \\ { \Rightarrow lim }_{ x\rightarrow 1 }1-\sqrt { x } =0\quad ,\quad { \Rightarrow lim }_{ x\rightarrow 1 }(cos^{ -1 }x)^{ 2 }=0\\ { lim }_{ x\rightarrow 1 }\left( \frac { 1-\sqrt { x }  }{ (cos^{ -1 }x)^{ 2 } }  \right) =\frac { 0 }{ 0 } \\ Now\quad using\quad l'hospital's\quad rule\\ { lim }_{ x\rightarrow 1 }\left( \dfrac { 1-\sqrt { x }  }{ (cos^{ -1 }x)^{ 2 } }  \right) ={ lim }_{ x\rightarrow 1 }\left( \dfrac { \frac { d(1-\sqrt { x } ) }{ dx }  }{ \frac { d(cos^{ -1 }x)^{ 2 } }{ dx }  }  \right) ={ lim }_{ x\rightarrow 1 }\dfrac { 1-\frac { 1 }{ 2\sqrt { x }  }  }{ 2cos^{ -1 }x*\frac { -1 }{ \sqrt { 1-{ x }^{ 2 } }  }  } \\ Now\quad { lim }_{ x\rightarrow 1 }1-\dfrac { 1 }{ 2\sqrt { x }  } =1-1/2=1/2\\ And\quad { lim }_{ x\rightarrow 1 }\dfrac { -2cos^{ -1 }x }{ \sqrt { 1-{ x }^{ 2 } }  } =\frac { 0 }{ 0 } \\ Again\quad using\quad l'hospital's\quad rule\\ \\ { lim }_{ x\rightarrow 1 }\dfrac { -2cos^{ -1 }x }{ \sqrt { 1-{ x }^{ 2 } }  } ={ lim }_{ x\rightarrow 1 }\dfrac { -2d(cos^{ -1 }x)/dx }{ d(\sqrt { 1-{ x }^{ 2 } } )/dx } ={ lim }_{ x\rightarrow 1 }\dfrac { -2(\frac { -1 }{ \sqrt { 1-{ x }^{ 2 } }  } )\quad  }{ \frac { -2x }{ 2\sqrt { 1-{ x }^{ 2 } }  }  } ={ lim }_{ x\rightarrow 1 }\dfrac { -2 }{ x } =-2\\ Therefore,\quad { lim }_{ x\rightarrow 1 }\dfrac { 1-\frac { 1 }{ 2\sqrt { x }  }  }{ 2cos^{ -1 }x*\frac { -1 }{ \sqrt { 1-{ x }^{ 2 } }  }  } =\dfrac { 1/2 }{ -2 } =-1/4\\ $$
  • Question 8
    1 / -0
    $$\displaystyle \lim_{I\rightarrow \left (\dfrac {\pi}{2}\right )} = \int_{0}^{t}\tan \theta \sqrt {\cos \theta} ln (\cos \theta) d\theta$$ is equal to
  • Question 9
    1 / -0
    If $$f '$$ (0) = 0 and f(x) is a differentiable and increasing function,then lim $$ x \rightarrow 0$$  $$\frac {x.f ' (x^2)}{f ' (x)}$$
  • Question 10
    1 / -0
    $$\quad \lim _{ n\rightarrow \infty  }{ \cfrac { 1 }{ n } \sum _{ r=1 }^{ 2n }{ \cfrac { r }{ \sqrt { { n }^{ 2 }+{ r }^{ 2 } }  }  }  } $$ equal to:
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now