Self Studies

Limits and Continuity Test 36

Result Self Studies

Limits and Continuity Test 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\displaystyle\underset{x\rightarrow 0}{Lt}\left(cosec x-\dfrac{1}{x}\right)=?$$
    Solution

  • Question 2
    1 / -0
    If $$f(x)=\begin{cases} \dfrac { 1-\sqrt { 2 } \sin { x }  }{ \pi -4x } ,\quad \quad ifx\neq \dfrac { \pi  }{ 4 }  \\ a\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad ,\quad \quad ifx=\dfrac { \pi  }{ 4 }  \end{cases}$$ is continous at $$x=\dfrac {\pi}{4}$$ then $$a=$$
    Solution

  • Question 3
    1 / -0
    $$If {A_i} = \frac{{x - {a_i}}}{{\left| {x - {a_i}} \right|}}, \,i = 1,2,3,.....n$$ and $${a_1}< {a_2}< {a_3}....< {a_{n,}} \, then$$
    $$\mathop {\lim }\limits_{x \to {a_m}} \left( {{A_1}{A_2}......{A_n}} \right), 1 \le m \le n$$
    Solution

  • Question 4
    1 / -0
    $$\displaystyle \mathop {\lim }\limits_{x \to \frac{\pi }{2}} \frac{{\cot x - \cos x}}{{{{\left( {\frac{\pi }{2} - x} \right)}^3}}}$$
    Solution

  • Question 5
    1 / -0
    $$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { \sin ^{ -1 }{ x } -\tan ^{ -1 }{ x }  }{ { x }^{ 3 } }  } $$ is equal to 
    Solution

  • Question 6
    1 / -0
    If $$\mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + x + 1}}{{x + 1}} - ax - b} \right)\, = 4$$,then
    Solution

  • Question 7
    1 / -0
    $$f(x)= x\sin\dfrac{1}{x} , \  for x\neq 0$$
           $$= 0,\  for x=0$$
    Then.
    Solution

  • Question 8
    1 / -0
    $$\displaystyle\lim_{n\rightarrow \infty}\left(\tan\theta +\dfrac{1}{2}\tan \dfrac{\theta}{2}+\dfrac{1}{2^2}\tan \dfrac{\theta}{2^2}+...+\dfrac{1}{2^n}\tan\dfrac{\theta}{2^n}\right)$$ equals?
    Solution

  • Question 9
    1 / -0
    Let p= $$\lim_{x\rightarrow 0+}(1+tan^{2}\sqrt{x})^{\frac{1}{2x}}$$ then log p is equal to :
    Solution

  • Question 10
    1 / -0
    $$f(x) = \left\{\begin{matrix}(3/x^{2})\sin 2x^{2} & if x M 0 \\\dfrac {x^{2} + 2x + c}{1 - 3x^{2}}  & if\ x \geq 0, x \neq \dfrac {1}{\sqrt {3}}\\ 0 & x = 1/ \sqrt {3}\end{matrix}\right.$$ then in order that $$f$$ be continuous at $$x = 0$$, the value of $$c$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now