Given,
$$\lim _{x\to \frac{\pi }{2}}\left(\dfrac{\cot \left(x\right)-\cos \left(x\right)}{\left(\pi -2x\right)^3}\right)$$
apply L-Hospital's rule
$$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{-\csc ^2\left(x\right)+\sin \left(x\right)}{-6\left(\pi -2x\right)^2}\right)$$
$$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{-\csc ^2\left(x\right)+\sin \left(x\right)}{6\left(\pi -2x\right)^2}\right)$$
apply L-Hospital's rule
$$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{-2\csc ^2\left(x\right)\cot \left(x\right)-\cos \left(x\right)}{-24\left(\pi -2x\right)}\right)$$
$$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{-2\csc ^2\left(x\right)\cot \left(x\right)-\cos \left(x\right)}{24\left(\pi -2x\right)}\right)$$
apply L-Hospital's rule
$$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)}{-48}\right)$$
$$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{1}{48}\left(2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)\right)\right)$$
$$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)}{48}\right)$$
$$=-\dfrac{2\left(-2\csc ^2\left(\frac{\pi }{2}\right)\cot ^2\left(\frac{\pi }{2}\right)-\csc ^4\left(\frac{\pi }{2}\right)\right)-\sin \left(\frac{\pi }{2}\right)}{48}$$
upon solving, we get,
$$=\dfrac{1}{16}$$