Self Studies

Limits and Continuity Test 38

Result Self Studies

Limits and Continuity Test 38
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ \underset { x\rightarrow 0 }{ lim } \left[ { x }^{ 2 }cosec\quad \left( { x }^{ 2 } \right)^0 \right]  $$is equal to :
    Solution

  • Question 2
    1 / -0
    The value of $$\lim_{x \rightarrow -1} \dfrac{\sqrt{\pi}-\sqrt{\cos^{-1}x}}{\sqrt{x+1}}$$ is given by 
    Solution

  • Question 3
    1 / -0
    If $$\lim_{x \rightarrow 0}\dfrac{a \sin x-bx+cx^{2}+x^{3}}{2x^{2} \log(1+x)-2x^{3}+x^{4}}$$ exists and is finite, then the value of $$a,b,c$$ are respectively 
    Solution
    Given, $$\underset{x \rightarrow 0}{\lim} \dfrac{a \sin x - bx + cx^2 + x^3}{2x^2 \log (1 + x) - 2x^3 + x^4} = $$ finite

    To find : $$a, b, c$$

    $$\underset{x \rightarrow 0}{\lim} \dfrac{a \sin x - bx + cx^2 + x^3}{2x^2 \log (1 + x) - 2x^3 + x^4} \rightarrow \dfrac{0}{0}$$

    $$\therefore$$ Using L'hospital rule

    $$\underset{x \rightarrow 0}{\lim} \dfrac{a \cos x - b + 2 cx + 3x^2}{4x \ln (1 + x) + \dfrac{2x^2}{(1 + x)} - 6x^2 + 4x^3} \rightarrow \dfrac{a - b}{0}$$

    Using L'Hospital again,

    $$\underset{x \rightarrow 0}{\lim} \dfrac{-a \sin x + 2c + 6x}{4 \ln (1 + x) + \dfrac{4x}{1 + x} + \dfrac{4x (1 + x) - 2x^2}{(1 + x)^2} - 12x + 12x^2} \rightarrow \dfrac{2c}{0}$$


    Using L' Hospital rule again,

    $$\underset{x \rightarrow 0}{\lim} \dfrac{-a \cos x + 6}{\dfrac{(4 + 4x)(1 +x)^2 - (2 + 2x)(4x + 2x^2) - 12 + 24x}{(1 + x)^4}}$$ $$+\dfrac{4}{1 + x} + \dfrac{4 (1 + x) - 4x}{(1 + x)^2}$$

    $$= \dfrac{-a + 6}{4 + 4 + 4 - 12} = \dfrac{-a + 6}{0} \Rightarrow a = 6$$

    as the limit is finite.

    Hence, $$a = 6 = b, c = 0$$. Option C.
  • Question 4
    1 / -0
    $$ \underset { x\rightarrow a }{ lim } \cfrac { sin\quad x-sin\quad a }{ \sqrt [ 3 ]{ x } -\sqrt [ 3 ]{ a }  }  $$
    Solution

  • Question 5
    1 / -0
    The value of $$\displaystyle \lim_{x\rightarrow 0}\dfrac {1-\cos^{3}x}{x\sin x\cos x}$$ is
    Solution

  • Question 6
    1 / -0
    Integrate:
     $$lim_{x\rightarrow 0}\dfrac{(1-\cos{2x})^{2}}{2x\tan{x}-x\tan{2x}}$$
    Solution

  • Question 7
    1 / -0
    The value of $$\lim_{x \rightarrow 0} \left(\dfrac{\tan x}{x}\right)^{1/x^{3}}$$ is-
    Solution

  • Question 8
    1 / -0
    $$\displaystyle \lim_{x\rightarrow 0^{+}}{(\csc x)^{1/\log x}}$$=
    Solution

  • Question 9
    1 / -0
    $$ \underset { x\rightarrow \cfrac { \pi  }{ 2 }  }{ lim } \cfrac { cot \,  x-cos\, x }{ \left( \pi -{ 2x } \right)^ 3 } $$ equals
    Solution
    Given,

    $$\lim _{x\to \frac{\pi }{2}}\left(\dfrac{\cot \left(x\right)-\cos \left(x\right)}{\left(\pi -2x\right)^3}\right)$$

    apply L-Hospital's rule

    $$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{-\csc ^2\left(x\right)+\sin \left(x\right)}{-6\left(\pi -2x\right)^2}\right)$$

    $$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{-\csc ^2\left(x\right)+\sin \left(x\right)}{6\left(\pi -2x\right)^2}\right)$$

    apply L-Hospital's rule

    $$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{-2\csc ^2\left(x\right)\cot \left(x\right)-\cos \left(x\right)}{-24\left(\pi -2x\right)}\right)$$

    $$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{-2\csc ^2\left(x\right)\cot \left(x\right)-\cos \left(x\right)}{24\left(\pi -2x\right)}\right)$$

    apply L-Hospital's rule

    $$=\lim _{x\to \frac{\pi }{2}}\left(\dfrac{2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)}{-48}\right)$$

    $$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{1}{48}\left(2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)\right)\right)$$

    $$=\lim _{x\to \frac{\pi }{2}}\left(-\dfrac{2\left(-2\csc ^2\left(x\right)\cot ^2\left(x\right)-\csc ^4\left(x\right)\right)-\sin \left(x\right)}{48}\right)$$

    $$=-\dfrac{2\left(-2\csc ^2\left(\frac{\pi }{2}\right)\cot ^2\left(\frac{\pi }{2}\right)-\csc ^4\left(\frac{\pi }{2}\right)\right)-\sin \left(\frac{\pi }{2}\right)}{48}$$

    upon solving, we get,

    $$=\dfrac{1}{16}$$
  • Question 10
    1 / -0
    The value of $$ \underset { x\rightarrow \frac { x }{ 2 }  }{ lim } \frac { log\sin { x }  }{ { \left( \frac { \pi  }{ 2 } -x \right)  }^{ 2 } }$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now