Self Studies

Limits and Continuity Test 39

Result Self Studies

Limits and Continuity Test 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\lim_{n\rightarrow \infty}\dfrac{1}{n^{2}}\left[\sin^{3}\dfrac{\pi}{4n}+2\sin^{3}\dfrac{2\pi}{4n}+3\sin^{3}\dfrac{3\pi}{4n}+....+n\sin^{3}\dfrac{n\pi}{4n}\right]=$$
    Solution

  • Question 2
    1 / -0
    If $$ \alpha \quad and \beta $$ are the roots of the equation  $$ {ax}^{2}+bx+c=0 $$, then 
     $$ \underset { x\rightarrow \cfrac { \pi  }{ 2 }  }{ lim } \cfrac { tan\left[ \left( \alpha +\beta  \right) x \right]  }{ sin\left[ \left( \alpha \beta  \right) x \right]  }  $$ is equal to :
    Solution

  • Question 3
    1 / -0
    $$\begin{matrix} lim \\ n\rightarrow \infty  \end{matrix}\int _{ 0 }^{ 1 }{ \frac { { nx }^{ n-1 } }{ 1+{ x }^{ 2 } }  } dx=$$
    Solution

  • Question 4
    1 / -0
    If $$L = \underset{x \rightarrow 0}{lim} \dfrac{a \, sin \, x - sin \, 2x}{tan^3 x}$$ is finite, then the value of L is :
    Solution

  • Question 5
    1 / -0
    $$\underset { x\rightarrow 0 }{ lim } \left( \dfrac { \left( 1+x \right) ^{ \dfrac { 1 }{ x }  } }{ e }  \right) ^{ \dfrac { 1 }{ sinx }  }$$ is equal to 
  • Question 6
    1 / -0
    $$ \underset { x\rightarrow 0 }{ lim } \cfrac { { \left( 25 \right)  }^{ x }-2\left( 15 \right)^ x+{ 9 }^{ x } }{ cos6x-cos2x }  $$ is equal to :
  • Question 7
    1 / -0
    $$Lt_{x\to 0} \dfrac{sin x - x+\dfrac{x^3}{6}}{x^5}=$$_________
    Solution

  • Question 8
    1 / -0
    $${ lim }_{ x\rightarrow 1 }(1+cos\pi ){ cot }^{ 2 }\pi x=-----$$
    Solution

  • Question 9
    1 / -0
    $$\displaystyle \lim _{ \theta \rightarrow \pi /2 }{ \dfrac { 1-\sin  \theta  }{ (\pi /2-\theta )\cos { \theta  }  }  } $$ is equal to
    Solution

  • Question 10
    1 / -0
    If $$\underset {x \rightarrow \infty}{lim} (1+\frac {a}{x}-\frac {4}{x^{2}})^{2x} =e^{3}$$ , then 'a' is equal to :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now