Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    The value of $$lim_{x\to 0} \dfrac{sin(\pi cos^2 x)}{x^2}$$ equals 

  • Question 2
    1 / -0

    The value of $$\lim _{ x\rightarrow 0 }{ \dfrac { 1-\cos { ^{ 3 }x }  }{ x\sin { x\cos { x }  }  }  }$$ is

  • Question 3
    1 / -0

    The value of $$\displaystyle\lim _ { x \rightarrow \infty } a ^ { x } \sin \left( \frac { b } { a ^ { x } } \right)$$ where $$a > 1$$ is 

  • Question 4
    1 / -0

    The value of $$\displaystyle \lim _{ x\rightarrow 3 }{ \dfrac { \left( { x }^{ 3 }+27 \right) \log _{ e }{ \left( x-2 \right)  }  }{ { x }^{ 2 }-9 }  } $$ is

  • Question 5
    1 / -0

    $$\underset { x\rightarrow 1 }{ lim } \frac { xtan(x-[x]) }{ x-1 } $$ is:

  • Question 6
    1 / -0

    The value of $$\displaystyle \lim_{x \rightarrow 0} \left(\dfrac{\sin x}{x}\right)^{1/x^{2}}$$ is 

  • Question 7
    1 / -0

    $$\lim_{x\rightarrow 0 }(\frac{p^{\frac{1}{x}}+q^{\frac{1}{x}}+r^{\frac{1}{x}}+s^{\frac{1}{x}}}{4})3x $$ where p,q,r,s$$> 0 $$ is equal to

  • Question 8
    1 / -0

    The value of $$lim_{\theta \to \dfrac{\pi}{2}} (sec \theta - tan \theta)$$ equals 

  • Question 9
    1 / -0

    $$\lim- {x\to 0}$$ $$\dfrac{1- cos(1 - cos4x)}{x^4}$$ is equal to : 

  • Question 10
    1 / -0

    If $$\displaystyle \lim _{ x\rightarrow 0 }{ \dfrac { \left( \sin { nx }  \right) \left[ (a-n)nx-tanx \right]  }{ { x }^{ 2 } }  } =0$$, then the value of $$a$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now