Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \lim _{ \theta \rightarrow 0 }{ \frac { 4\theta \left( \tan { \theta -2\theta \tan { \theta  }  }  \right)  }{ { \left( 1-\cos { 2\theta  }  \right)  }^{ 2 } }  } $$ is

  • Question 2
    1 / -0

    $$\displaystyle\lim _{ x\rightarrow 0 }{ \dfrac { 3\sin { \left( { x }^{ 9} \right) -\sin { \left( { x }^{ 9 } \right)  }  }  }{ { x }^{ 3 } }  } =q$$

  • Question 3
    1 / -0

    Let $$f(x)=(1+\sin x)^{\csc x}$$, the value of $$f(0)$$ so that $$f$$ is a continuous function is 

  • Question 4
    1 / -0

    If $$k$$  is an integer such that $$\lim_{n \rightarrow \infty} \left[\left(\cos \dfrac{k\pi}{4}\right)^{2}-\left(\cos \dfrac{k\pi}{6}\right)^{2}\right]=0$$ then :

  • Question 5
    1 / -0

    The value of $$\underset{x \rightarrow 0}{lim} \cos \,ec^4 \,x \displaystyle \overset{x^2}{\underset{0}{\int}} \dfrac{In(1 + 4t)}{1 + t^2}dt$$ is

  • Question 6
    1 / -0

    $$\lim _ { x \rightarrow 0 } \left\{ \tan \left( \frac { \pi } { 4 } + x \right) \right\} ^ { \frac { 1 } { x } } =$$

  • Question 7
    1 / -0

    If $$g(x)=\frac { x }{ \left[ x \right]  } for\quad x>2\quad then\quad \underset { x\rightarrow { 2 }^{ + } }{ Lim } \frac { g\left( x \right) -g\left( 2 \right)  }{ x-2 } $$

  • Question 8
    1 / -0

    $$\lim_{n \rightarrow \infty}n^{2}\left(x^{1/n}-x^{1/\left(n+n\right)}\right),x>0$$, is equal to 

  • Question 9
    1 / -0

    $$\lim_{x\rightarrow 0}\frac{ln(sin 3x)}{ln(sin x)}$$ is equal to

  • Question 10
    1 / -0

    $$\underset{x \rightarrow 2}{lim} \dfrac{\sqrt[3]{60 + x^2} - 4}{\sin (x - 2)}$$ equals 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now