Self Studies

Limits and Continuity Test 44

Result Self Studies

Limits and Continuity Test 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\lim_{x\rightarrow 0}\dfrac{2\left(\sqrt{3}\sin\left(\dfrac{\pi}{6}+x\right)-\cos\left(\dfrac{\pi}{6}+x\right)\right)}{x\sqrt{3}\left(\sqrt{3}\cos x-\sin x\right)}$$
    Solution

  • Question 2
    1 / -0
    $$\lim_{x\rightarrow \pi/4}\dfrac{2\sqrt{2}-\left(\cos x+\sin x\right)^{2}}{1-\sin 2x}$$ is equal to 
    Solution

  • Question 3
    1 / -0
    the value of $$\underset { x\rightarrow \infty  }{ lim } \frac { { x }^{ 5 } }{ { 5 }^{ x } } $$ is-
    Solution

  • Question 4
    1 / -0
    $$\lim _ { x \rightarrow 5 } \frac { \sin ^ { 2 } ( x - 5 ) \tan ( x - 5 ) } { \left( x ^ { 2 } - 25 \right) ( x - 5 ) } =$$
    Solution

  • Question 5
    1 / -0
    $$\underset { x\rightarrow \pi /4 }{ Lim } \dfrac { 2\sqrt { 2 } \left( cosx+sinx \right) ^{ 3 } }{ 1-sin2x } =2$$ is equal to
    Solution

  • Question 6
    1 / -0
    The value f $$\lim_{x\rightarrow \pi/4}\dfrac{\sqrt{1-\sqrt{\sin 2x}}}{\pi-4x}=$$
    Solution

  • Question 7
    1 / -0
    If $$\displaystyle \lim_{x\rightarrow 0}\dfrac {ae^{-x}-b\cos x-\dfrac {1}{2}cx}{x\cos x}=2$$ then the value of $$a+b+c$$ is-
    Solution

  • Question 8
    1 / -0
    The value of $$\displaystyle \lim _{ x\rightarrow \frac { x }{ 4 }  }{ \dfrac { 4\sqrt { 2 } -{ \left( \cos { x } +\sin { x }  \right)  }^{ 5 } }{ 1-\sin { 2x }  }  } $$ is
    Solution

  • Question 9
    1 / -0
    If $$\underset { x\rightarrow 0 }{ Lim } \dfrac { \left( 1+{ a }^{ 3 } \right) +8{ e }^{ 1/x } }{ 1+\left( 1-{ b }^{ 3 } \right) +{ e }^{ 1/x } } =2$$ then
    Solution

  • Question 10
    1 / -0
    $$\underset{x \rightarrow n/2}{lim} \dfrac{\cot x - \cos x}{(\pi - 2x)^3}$$ equals
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now