Self Studies

Limits and Cont...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle\lim_{x\rightarrow 0}\dfrac{x\tan 2x-2x\tan x}{(1-\cos 2x)^2}$$ is equal to?

  • Question 2
    1 / -0

    If $$f(x)$$ is odd linear polynomial with $$f(1)=1$$, then $$\underset{x \to 0} {\lim} \dfrac{2^{f(\tan x)}-2^{f(\sin x)}}{x^{2}f(\sin x)}$$ is 

  • Question 3
    1 / -0

    If $$\displaystyle\lim_{x\rightarrow 0}[1+x ln (1+b^2)]^{1/x}=2b\sin^2\theta, b > $$ s m f $$\theta\in (-\pi, \pi]$$, then the value of $$\theta$$ is?

  • Question 4
    1 / -0

     $$\lim _ { x \rightarrow \infty } \dfrac { \sin \left( \pi \cos ^ { -2 } x \right) } { x ^ { 2 } }$$  is equal to:

  • Question 5
    1 / -0

    The value of $$\underset { x\rightarrow 0 }{ lim } \frac { { 27 }^{ x }-{ 9 }^{ x }-{ 3 }^{ x }+1 }{ \sqrt { 5 } -\sqrt { 4+cosx }  } $$ is 

  • Question 6
    1 / -0

    $$\lim _ { x \rightarrow 0 } \dfrac { | \cos ( \sin ( 3 x ) ) | - 1 } { x ^ { 2 } }$$   equals

  • Question 7
    1 / -0

    $$\lim _ { x \rightarrow 0 } \left( \left[ \dfrac { - 5 \sin x } { x } \right] + \left[ \dfrac { 6 \sin x } { x } \right] \right)$$  (where  $$[ .]$$  denotes greatest integer function) is equal to

  • Question 8
    1 / -0

    $$\displaystyle\lim_{x\rightarrow \dfrac{\pi}{4}}\dfrac{\cos x-\sin x}{\left(\dfrac{\pi}{4}-x\right)(\cos x+\sin x)}=?$$

  • Question 9
    1 / -0

    $$\displaystyle\lim_{x\rightarrow 0}\left\{\dfrac{log_e(1+x)}{x^2}+\dfrac{x-1}{x}\right\}$$ is equal to?

  • Question 10
    1 / -0

     Consider  $$\lim _ { x \rightarrow 0 } \dfrac { a x + b e ^ { - x } + \sin x + 1 } { a x - b \sin x } = \ell ( \ell$$  is a finite number)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now