Self Studies

Limits and Continuity Test 48

Result Self Studies

Limits and Continuity Test 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\underset { x\rightarrow 0 }{ lim } \dfrac { { x }^{ 3 } }{ \sqrt { a+x } (bx-sinx) } =1,$$ a > 0, then a + b is equal to 
    Solution

  • Question 2
    1 / -0
    $$\displaystyle\lim_{x\rightarrow 0}\dfrac{(1-\cos 2x)\sin 5x}{x^2\sin 3x}=?$$
    Solution

  • Question 3
    1 / -0
    $$\underset { x\rightarrow 0 }{ lim } \dfrac { 1-\cos { 2x }  }{ \cos { 2x } -\cos { 8x }  } $$ is equal to 
    Solution

  • Question 4
    1 / -0
    The value of $$\underset { x\rightarrow 0 }{ lim } \frac { { 27 }^{ x }-{ 9 }^{ x }{ -3 }^{ x }+1 }{ \sqrt { 5 } -\sqrt { 4+cos\quad x }  } $$
    Solution

  • Question 5
    1 / -0
    $$\lim _ { x \rightarrow - 1 } \dfrac { \cos 2 - \cos 2 x } { x ^ { 2 } - | x | }$$  is equal to :
    Solution

  • Question 6
    1 / -0
    $$\lim _ { x \rightarrow 0 } \dfrac { \sin 4 x } { \tan 7 x } =$$
    Solution

  • Question 7
    1 / -0
    $$\lim _{ x\rightarrow 0 }{ \cfrac { x.{ 10 }^{ x }-x }{ 1-cosx } = } $$
    Solution

  • Question 8
    1 / -0
    $$\lim _ { x \rightarrow 0 } \dfrac { \sin x ^ { 5 } } { \sin ^ { 4 } x } =$$
    Solution

  • Question 9
    1 / -0
    $$\lim _ { x \rightarrow 1 } \left( \log _ { 3 } 3 x \right) ^ { \log _ { x } 3 } =?$$
    Solution

  • Question 10
    1 / -0
    Let  $$f ( \beta ) = \lim _ { \alpha \rightarrow \beta } \dfrac { \sin ^ { 2 } \alpha - \sin ^ { 2 } \beta } { \alpha ^ { 2 } - \beta ^ { 2 } },$$  then  $$f \left( \dfrac { \pi } { 4 } \right)$$  is greater than-
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now